IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v90y2003i1p139-156.html
   My bibliography  Save this item

A dependence measure for multivariate and spatial extreme values: Properties and inference

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
  2. Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
  3. Rodríguez, Jhan & Bárdossy, András, 2015. "Entropy measure for the quantification of upper quantile interdependence in multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 317-324.
  4. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
  5. Chiapino, Mael & Sabourin, Anne & Segers, Johan, 2018. "Identifying groups of variables with the potential of being large simultaneously," LIDAM Discussion Papers ISBA 2018006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  6. Joshua Hewitt & Miranda J. Fix & Jennifer A. Hoeting & Daniel S. Cooley, 2019. "Improved Return Level Estimation via a Weighted Likelihood, Latent Spatial Extremes Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 426-443, September.
  7. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
  8. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
  9. Harald Schellander & Tobias Hell, 2018. "Modeling snow depth extremes in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1367-1389, December.
  10. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
  11. Erwan Koch, 2019. "Spatial Risk Measures and Rate of Spatial Diversification," Risks, MDPI, vol. 7(2), pages 1-26, May.
  12. Whitney K. Huang & Daniel S. Cooley & Imme Ebert-Uphoff & Chen Chen & Snigdhansu Chatterjee, 2019. "New Exploratory Tools for Extremal Dependence: $$\chi $$ χ Networks and Annual Extremal Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 484-501, September.
  13. Manaf Ahmed & Véronique Maume‐Deschamps & Pierre Ribereau, 2022. "Recognizing a spatial extreme dependence structure: A deep learning approach," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
  14. Park, Eunchun & Maples, Joshua, 2018. "Serially Dependent Extreme Events in Agricultural Commodity Futures Markets," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266626, Southern Agricultural Economics Association.
  15. Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
  16. Vitalii Makogin & Marco Oesting & Albert Rapp & Evgeny Spodarev, 2021. "Long range dependence for stable random processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 161-185, March.
  17. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2014. "Dependence properties of multivariate max-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 134-140.
  18. Opitz, T., 2013. "Extremal t processes: Elliptical domain of attraction and a spectral representation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 409-413.
  19. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
  20. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
  21. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
  22. Park, Eunchun & Maples, Josh, 2018. "Extreme Events and Serial Dependence in Commodity Prices," 2018 Annual Meeting, August 5-7, Washington, D.C. 274469, Agricultural and Applied Economics Association.
  23. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
  24. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
  25. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
  26. Erwan Koch, 2018. "Extremal dependence and spatial risk measures for insured losses due to extreme winds," Papers 1804.05694, arXiv.org, revised Dec 2019.
  27. Erwan Koch, 2018. "Spatial risk measures and rate of spatial diversification," Papers 1803.07041, arXiv.org, revised Jun 2019.
  28. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
  29. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
  30. Kabluchko, Zakhar & Schlather, Martin, 2010. "Ergodic properties of max-infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 281-295, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.