IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v24y2019i4d10.1007_s13253-019-00359-1.html
   My bibliography  Save this article

Exploration and Inference in Spatial Extremes Using Empirical Basis Functions

Author

Listed:
  • Samuel A. Morris

    (North Carolina State University)

  • Brian J. Reich

    (North Carolina State University)

  • Emeric Thibaud

    (Ecole Polytechnique Fédérale de Lausanne)

Abstract

Statistical methods for inference on spatial extremes of large datasets are yet to be developed. Motivated by standard dimension reduction techniques used in spatial statistics, we propose an approach based on empirical basis functions to explore and model spatial extremal dependence. Based on a low-rank max-stable model, we propose a data-driven approach to estimate meaningful basis functions using empirical pairwise extremal coefficients. These spatial empirical basis functions can be used to visualize the main trends in extremal dependence. In addition to exploratory analysis, we describe how these functions can be used in a Bayesian hierarchical model to model spatial extremes of large datasets. We illustrate our methods on extreme precipitations in eastern USA. Supplementary materials accompanying this paper appear online

Suggested Citation

  • Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
  • Handle: RePEc:spr:jagbes:v:24:y:2019:i:4:d:10.1007_s13253-019-00359-1
    DOI: 10.1007/s13253-019-00359-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-019-00359-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-019-00359-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Huser & A. C. Davison, 2014. "Space–time modelling of extreme events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 439-461, March.
    2. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    3. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00268232, HAL.
    4. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    5. Lelys Bravo Guenni & Susan J. Simmons & Benjamin A. Shaby & Brian J. Reich, 2012. "Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland," Environmetrics, John Wiley & Sons, Ltd., vol. 23(8), pages 638-648, December.
    6. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Post-Print hal-00268232, HAL.
    7. Jennifer L. Wadsworth & Jonathan A. Tawn, 2014. "Efficient inference for spatial extreme value processes associated to log-Gaussian random functions," Biometrika, Biometrika Trust, vol. 101(1), pages 1-15.
    8. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    9. Emeric Thibaud & Thomas Opitz, 2015. "Efficient inference and simulation for elliptical Pareto processes," Biometrika, Biometrika Trust, vol. 102(4), pages 855-870.
    10. Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
    11. Sebastian Engelke & Alexander Malinowski & Zakhar Kabluchko & Martin Schlather, 2015. "Estimation of Hüsler–Reiss distributions and Brown–Resnick processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 239-265, January.
    12. Fougères, Anne-Laure & Mercadier, Cécile & Nolan, John P., 2013. "Dense classes of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 109-129.
    13. Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    2. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
    3. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    4. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    5. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    7. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
    8. Joshua Hewitt & Miranda J. Fix & Jennifer A. Hoeting & Daniel S. Cooley, 2019. "Improved Return Level Estimation via a Weighted Likelihood, Latent Spatial Extremes Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 426-443, September.
    9. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    10. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    12. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    13. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
    14. Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
    15. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    16. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    17. Koch, Erwan & Robert, Christian Y., 2019. "Geometric ergodicity for some space–time max-stable Markov chains," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 43-49.
    18. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    19. Ahmed BenSaïda, 2021. "The Good and Bad Volatility: A New Class of Asymmetric Heteroskedastic Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 540-570, April.
    20. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:24:y:2019:i:4:d:10.1007_s13253-019-00359-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.