Serially Dependent Extreme Events in Agricultural Commodity Futures Markets
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.266626
Download full text from publisher
References listed on IDEAS
- Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
- Tim Krehbiel & Lee C. Adkins, 2005. "Price risk in the NYMEX energy complex: An extreme value approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 309-337, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Park, Eunchun & Maples, Josh, 2018. "Extreme Events and Serial Dependence in Commodity Prices," 2018 Annual Meeting, August 5-7, Washington, D.C. 274469, Agricultural and Applied Economics Association.
- Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
- Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
- Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
- Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021.
"Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights,"
Mathematics, MDPI, vol. 9(21), pages 1-33, November.
- Dissanayake, Pushpa & Flock, Teresa & Meier, Johanna & Sibbertsen, Philipp, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Hannover Economic Papers (HEP) dp-690, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
- Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016.
"A continuous updating weighted least squares estimator of tail dependence in high dimensions,"
LIDAM Discussion Papers ISBA
2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John H. J. & Kiriliouk, Anna & Segers, Johan, 2018. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Reprints ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
- Papastathopoulos, Ioannis & Tawn, Jonathan A., 2014. "Dependence properties of multivariate max-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 134-140.
- Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
- Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
- Guo, Zi-Yi, 2017. "Models with Short-Term Variations and Long-Term Dynamics in Risk Management of Commodity Derivatives," EconStor Preprints 167619, ZBW - Leibniz Information Centre for Economics.
- Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
- Vêlayoudom Marimoutou & Bechir Raggad & Abdelwahed Trabelsi, 2006. "Extreme Value Theory and Value at Risk : Application to Oil Market," Working Papers halshs-00410746, HAL.
- Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
- Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
- Erwan Koch, 2019. "Spatial Risk Measures and Rate of Spatial Diversification," Risks, MDPI, vol. 7(2), pages 1-26, May.
- Whitney K. Huang & Daniel S. Cooley & Imme Ebert-Uphoff & Chen Chen & Snigdhansu Chatterjee, 2019. "New Exploratory Tools for Extremal Dependence: $$\chi $$ χ Networks and Annual Extremal Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 484-501, September.
- Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
- Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
More about this item
Keywords
Agricultural Finance; Research Methods/ Statistical Methods; Risk and Uncertainty;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2018-10-08 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea18:266626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.