IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i1p139-156.html
   My bibliography  Save this article

A dependence measure for multivariate and spatial extreme values: Properties and inference

Author

Listed:
  • Martin Schlather

Abstract

We present properties of a dependence measure that arises in the study of extreme values in multivariate and spatial problems. For multivariate problems the dependence measure characterises dependence at the bivariate level, for all pairs and all higher orders up to and including the dimension of the variable. Necessary and sufficient conditions are given for subsets of dependence measures to be self-consistent, that is to guarantee the existence of a distribution with such a subset of values for the dependence measure. For pairwise dependence, these conditions are given in terms of positive semidefinite matrices and non-differentiable, positive definite functions. We construct new nonparametric estimators for the dependence measure which, unlike all naive nonparametric estimators, impose these self-consistency properties. As the new estimators provide an improvement on the naive methods, both in terms of the inferential and interpretability properties, their use in exploratory extreme value analyses should aid the identification of appropriate dependence models. The methods are illustrated through an analysis of simulated multivariate data, which shows that a lack of self-consistency is frequently a problem with the existing estimators, and by a spatial analysis of daily rainfall extremes in south-west England, which finds a smooth decay in extremal dependence with distance. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:139-156
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:139-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.