IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v24y2019i3d10.1007_s13253-019-00356-4.html
   My bibliography  Save this article

New Exploratory Tools for Extremal Dependence: $$\chi $$ χ Networks and Annual Extremal Networks

Author

Listed:
  • Whitney K. Huang

    (University of Victoria)

  • Daniel S. Cooley

    (Colorado State University)

  • Imme Ebert-Uphoff

    (Colorado State University)

  • Chen Chen

    (University of Chicago)

  • Snigdhansu Chatterjee

    (University of Minnesota)

Abstract

Understanding dependence structure among extreme values plays an important role in risk assessment in environmental studies. In this work, we propose the $$\chi $$ χ network and the annual extremal network for exploring the extremal dependence structure of environmental processes. A $$\chi $$ χ network is constructed by connecting pairs whose estimated upper tail dependence coefficient, $${{\hat{\chi }}}$$ χ ^ , exceeds a prescribed threshold. We develop an initial $$\chi $$ χ network estimator, and we use a spatial block bootstrap to assess both the bias and variance of our estimator. We then develop a method to correct the bias of the initial estimator by incorporating the spatial structure in $$\chi $$ χ . In addition to the $$\chi $$ χ network, which assesses spatial extremal dependence over an extended period of time, we further introduce an annual extremal network to explore the year-to-year temporal variation of extremal connections. We illustrate the $$\chi $$ χ and the annual extremal networks by analyzing the hurricane season maximum precipitation at the US Gulf Coast and surrounding area. Analysis suggests there exists long distance extremal dependence for precipitation extremes in the study region and the strength of the extremal dependence may depend on some regional scale meteorological conditions, for example, sea surface temperature.

Suggested Citation

  • Whitney K. Huang & Daniel S. Cooley & Imme Ebert-Uphoff & Chen Chen & Snigdhansu Chatterjee, 2019. "New Exploratory Tools for Extremal Dependence: $$\chi $$ χ Networks and Annual Extremal Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 484-501, September.
  • Handle: RePEc:spr:jagbes:v:24:y:2019:i:3:d:10.1007_s13253-019-00356-4
    DOI: 10.1007/s13253-019-00356-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-019-00356-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-019-00356-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segers, Johan, 2012. "Max-stable models for multivariate extremes," LIDAM Reprints ISBA 2012012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Philippe Naveau & Armelle Guillou & Daniel Cooley & Jean Diebolt, 2009. "Modelling pairwise dependence of maxima in space," Biometrika, Biometrika Trust, vol. 96(1), pages 1-17.
    3. Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
    4. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    5. Tsonis, A.A. & Roebber, P.J., 2004. "The architecture of the climate network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 497-504.
    6. Segers, Johan, 2012. "Max-Stable Models For Multivariate Extremes," LIDAM Discussion Papers ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
    8. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junshu Jiang & Jordan Richards & Raphael Huser & David Bolin, 2024. "The Efficient Tail Hypothesis: An Extreme Value Perspective on Market Efficiency," Papers 2408.06661, arXiv.org.
    2. Dorit Hammerling & Brian J. Reich, 2019. "Guest Editors’ Introduction to the Special Issue on “Climate and the Earth System”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 395-397, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opitz, T., 2013. "Extremal t processes: Elliptical domain of attraction and a spectral representation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 409-413.
    2. Erwan Koch, 2018. "Extremal dependence and spatial risk measures for insured losses due to extreme winds," Papers 1804.05694, arXiv.org, revised Dec 2019.
    3. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    4. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    5. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    6. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Mai Jan-Frederik, 2020. "The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay," Dependence Modeling, De Gruyter, vol. 8(1), pages 210-220, January.
    9. Catalina Bolancé & Carlos Alberto Acuña, 2021. "A New Kernel Estimator of Copulas Based on Beta Quantile Transformations," Mathematics, MDPI, vol. 9(10), pages 1-16, May.
    10. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    12. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    13. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    14. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    15. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
    16. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
    17. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
    18. Mai Jan-Frederik, 2020. "The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay," Dependence Modeling, De Gruyter, vol. 8(1), pages 210-220, January.
    19. Krupskii, Pavel & Genton, Marc G., 2019. "A copula model for non-Gaussian multivariate spatial data," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 264-277.
    20. Mai Jan-Frederik, 2024. "Sharp bounds on the survival function of exchangeable min-stable multivariate exponential sequences," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:24:y:2019:i:3:d:10.1007_s13253-019-00356-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.