IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i5p2055-2087.html
   My bibliography  Save this article

Structure learning for extremal tree models

Author

Listed:
  • Sebastian Engelke
  • Stanislav Volgushev

Abstract

Extremal graphical models are sparse statistical models for multivariate extreme events. The underlying graph encodes conditional independencies and enables a visual interpretation of the complex extremal dependence structure. For the important case of tree models, we develop a data‐driven methodology for learning the graphical structure. We show that sample versions of the extremal correlation and a new summary statistic, which we call the extremal variogram, can be used as weights for a minimum spanning tree to consistently recover the true underlying tree. Remarkably, this implies that extremal tree models can be learned in a completely non‐parametric fashion by using simple summary statistics and without the need to assume discrete distributions, existence of densities or parametric models for bivariate distributions.

Suggested Citation

  • Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:5:p:2055-2087
    DOI: 10.1111/rssb.12556
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12556
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Engelke & Adrien S. Hitz, 2020. "Graphical models for extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 871-932, September.
    2. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2018. "Multivariate peaks over thresholds models," LIDAM Reprints ISBA 2018005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Sebastian Engelke & Raphaël De Fondeville & Marco Oesting, 2019. "Extremal behaviour of aggregated data with an application to downscaling," Biometrika, Biometrika Trust, vol. 106(1), pages 127-144.
    4. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
    6. Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2021. "Inference on extremal dependence in the domain of attraction of a structured Hüsler–Reiss distribution motivated by a Markov tree with latent variables," LIDAM Reprints ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    8. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiriliouk, Anna & Lee, Jeongjin & Segers, Johan, 2023. "X-Vine Models for Multivariate Extremes," LIDAM Discussion Papers ISBA 2023038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Asenova, Stefka & Segers, Johan, 2022. "Max-linear graphical models with heavy-tailed factors on trees of transitive tournaments," LIDAM Discussion Papers ISBA 2022031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    4. Ning, Cathy & Wirjanto, Tony S., 2009. "Extreme return-volume dependence in East-Asian stock markets: A copula approach," Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.
    5. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    6. Beaulieu, Marie-Claude, 1995. "Rendements boursiers et inflation," L'Actualité Economique, Société Canadienne de Science Economique, vol. 71(4), pages 455-480, décembre.
    7. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    8. Shih Yung Wei & Jack J. W. Yang, 2011. "The Impact Of Short Sale Restrictions On Stock Volatility: Evidence From Taiwan," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 5(4), pages 89-98.
    9. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    10. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    11. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    12. Brooks, Robert D. & Davidson, Sinclair & Faff, Robert W., 1997. "An examination of the effects of major political change on stock market volatility: the South African experience," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 255-275, October.
    13. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    14. Mohammad Nazeri Tahroudi & Rasoul Mirabbasi & Yousef Ramezani & Farshad Ahmadi, 2022. "Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2027-2043, April.
    15. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    16. Sang Hoon Kang & Seong-Min Yoon, 2010. "Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns," Korean Economic Review, Korean Economic Association, vol. 26, pages 431-451.
    17. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    18. Vlaar, Peter J. G., 2000. "Value at risk models for Dutch bond portfolios," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1131-1154, July.
    19. Estrada, Javier, 1995. "Empirical evidence on the impact of European insider trading regulations," DEE - Working Papers. Business Economics. WB 7068, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    20. repec:zbw:rwirep:0243 is not listed on IDEAS
    21. Oscar Bajo-Rubio & Simón Sosvilla Rivero, 1993. "Teorías del tipo de cambio: una panorámica," Documentos de Trabajo del ICAE 9307, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:5:p:2055-2087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.