A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John H. J. & Kiriliouk, Anna & Segers, Johan, 2018. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Reprints ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
References listed on IDEAS
- R. Huser & A. C. Davison, 2014. "Space–time modelling of extreme events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 439-461, March.
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011.
"An M-Estimator for Tail Dependence in Arbitrary Dimensions,"
Discussion Paper
2011-013, Tilburg University, Center for Economic Research.
- Einmahl, John H. J. & Krajina, Andrea & Segers, Johan, 2012. "An M-estimator for tail dependence in arbitrary dimensions," LIDAM Reprints ISBA 2012035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- EINMAHL, John H.J. & KRAJINA, Andrea & Segers, Johan, 2011. "An M-Estimator For Tail Dependence In Arbitrary Dimensions," LIDAM Discussion Papers ISBA 2011005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
- John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016.
"An M-estimator of spatial tail dependence,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Other publications TiSEM 2d5c1a3b-a5f6-4329-8df2-f, Tilburg University, School of Economics and Management.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2016. "An M-estimator of spatial tail dependence," LIDAM Reprints ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Discussion Paper 2014-021, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
- Bucher, Axel & Segers, Johan, 2014. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Reprints ISBA 2014019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011.
"An M-Estimator for Tail Dependence in Arbitrary Dimensions,"
Discussion Paper
2011-013, Tilburg University, Center for Economic Research.
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Other publications TiSEM 27508aa0-9825-4d9e-b1f4-1, Tilburg University, School of Economics and Management.
- Einmahl, John H. J. & Krajina, Andrea & Segers, Johan, 2012. "An M-estimator for tail dependence in arbitrary dimensions," LIDAM Reprints ISBA 2012035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Krajina, A. & Segers, J., 2012. "An M-estimator for tail dependence in arbitrary dimensions," Other publications TiSEM 7d447c58-3e8f-4387-b36b-e, Tilburg University, School of Economics and Management.
- EINMAHL, John H.J. & KRAJINA, Andrea & Segers, Johan, 2011. "An M-Estimator For Tail Dependence In Arbitrary Dimensions," LIDAM Discussion Papers ISBA 2011005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jennifer L. Wadsworth & Jonathan A. Tawn, 2014. "Efficient inference for spatial extreme value processes associated to log-Gaussian random functions," Biometrika, Biometrika Trust, vol. 101(1), pages 1-15.
- Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
- Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
- Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kiriliouk, Anna & Lee, Jeongjin & Segers, Johan, 2023. "X-Vine Models for Multivariate Extremes," LIDAM Discussion Papers ISBA 2023038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
- Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Segers, Johan, 2019. "One- versus multi-component regular variation and extremes of Markov trees," LIDAM Discussion Papers ISBA 2019001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Nadine Gissibl & Claudia Klüppelberg & Steffen Lauritzen, 2021. "Identifiability and estimation of recursive max‐linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 188-211, March.
- Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
- Einmahl, John & Segers, Johan, 2020.
"Empirical Tail Copulas for Functional Data,"
Other publications TiSEM
edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
- Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Discussion Paper 2020-004, Tilburg University, Center for Economic Research.
- Einmahl, John & Segers, Johan, 2020. "Empirical tail copulas for functional data," LIDAM Discussion Papers ISBA 2020004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
- Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Miranda J. Fix & Daniel S. Cooley & Emeric Thibaud, 2021. "Simultaneous autoregressive models for spatial extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
- Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016.
"An M-estimator of spatial tail dependence,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Discussion Paper 2014-021, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2016. "An M-estimator of spatial tail dependence," LIDAM Reprints ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016.
"An M-estimator of spatial tail dependence,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Other publications TiSEM 2d5c1a3b-a5f6-4329-8df2-f, Tilburg University, School of Economics and Management.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2016. "An M-estimator of spatial tail dependence," LIDAM Reprints ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Discussion Paper 2014-021, Tilburg University, Center for Economic Research.
- Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
- Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Segers, Johan, 2020.
"Empirical Tail Copulas for Functional Data,"
Other publications TiSEM
edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
- Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Discussion Paper 2020-004, Tilburg University, Center for Economic Research.
- Einmahl, John & Segers, Johan, 2020. "Empirical tail copulas for functional data," LIDAM Discussion Papers ISBA 2020004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
- Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
- Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Mourahib, Anas & Kiriliouk, Anna & Segers, Johan, 2023. "Multivariate generalized Pareto distributions along extreme directions," LIDAM Discussion Papers ISBA 2023034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Xin Lao & Zuoxiang Peng & Saralees Nadarajah, 2023. "Tail Dependence Functions of Two Classes of Bivariate Skew Distributions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
- Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015.
"Nonparametric tests for constant tail dependence with an application to energy and finance,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
- Bucher, Axel & Jaschke, Stefan & Wied, Dominik, 2013. "Nonparametric tests for constant tail dependence with an application to energy and finance," LIDAM Discussion Papers ISBA 2013033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Chiapino, Mael & Sabourin, Anne & Segers, Johan, 2018. "Identifying groups of variables with the potential of being large simultaneously," LIDAM Discussion Papers ISBA 2018006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Goix, Nicolas & Sabourin, Anne & Clémençon, Stephan, 2017. "Sparse representation of multivariate extremes with applications to anomaly detection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 12-31.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:a3e7350b-4773-4bd8-9c3c-6bc485b83f4d. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.