IDEAS home Printed from https://ideas.repec.org/r/jae/japmet/v17y2002i5p549-564.html
   My bibliography  Save this item

GO-GARCH: a multivariate generalized orthogonal GARCH model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
  2. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CIRJE F-Series CIRJE-F-657, CIRJE, Faculty of Economics, University of Tokyo.
  3. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702, September.
  4. Hafner, Christian & Herwartz, Helmut, 2020. "Dynamic score driven independent component analysis," LIDAM Discussion Papers ISBA 2020031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  5. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
  6. repec:cte:wsrepe:24552 is not listed on IDEAS
  7. Roy van der Weide, 2004. "Wake me up before you GO-GARCH," Computing in Economics and Finance 2004 316, Society for Computational Economics.
  8. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
  9. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
  10. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
  11. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
  12. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
  13. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
  14. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
  15. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
  16. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
  17. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
  18. Wu, Bi-Bo, 2021. "The dynamics of oil on China’s commodity sectors: What can we learn from a quantile perspective?," Journal of Commodity Markets, Elsevier, vol. 23(C).
  19. Mohamed Yousfi & Abderrazak Dhaoui & Houssam Bouzgarrou, 2021. "Risk Spillover during the COVID-19 Global Pandemic and Portfolio Management," JRFM, MDPI, vol. 14(5), pages 1-29, May.
  20. Helmut Lütkepohl & Thore Schlaak, 2018. "Choosing Between Different Time‐Varying Volatility Models for Structural Vector Autoregressive Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 715-735, August.
  21. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
  22. Raza, Naveed & Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Syed Ali, 2018. "Do commodities effectively hedge real estate risk? A multi-scale asymmetric DCC approach," Resources Policy, Elsevier, vol. 57(C), pages 10-29.
  23. Groba, Jonatan & Lafuente, Juan A. & Serrano, Pedro, 2013. "The impact of distressed economies on the EU sovereign market," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2520-2532.
  24. Manuel A. Hernandez & Raul Ibarra & Danilo R. Trupkin, 2014. "How far do shocks move across borders? Examining volatility transmission in major agricultural futures markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 301-325.
  25. Stavros Degiannakis & David Duffy & George Filis, 2014. "Business Cycle Synchronization in EU: A Time-Varying Approach," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(4), pages 348-370, September.
  26. Kumiega, Andrew & Neururer, Thaddeus & Van Vliet, Ben, 2011. "Independent component analysis for realized volatility: Analysis of the stock market crash of 2008," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(3), pages 292-302, June.
  27. Herwartz, Helmut & Raters, Fabian H.C., 2015. "Copula-MGARCH with continuous covariance decomposition," Economics Letters, Elsevier, vol. 133(C), pages 73-76.
  28. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
  29. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
  30. Chrétien, Stéphane & Ortega, Juan-Pablo, 2014. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 210-236.
  31. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
  32. Sharma, Udayan & Karmakar, Madhusudan, 2023. "Measuring minimum variance hedging effectiveness: Traditional vs. sophisticated models," International Review of Financial Analysis, Elsevier, vol. 87(C).
  33. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
  34. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
  35. Sarwar, Suleman & Khalfaoui, Rabeh & Waheed, Rida & Dastgerdi, Hamidreza Ghorbani, 2019. "Volatility spillovers and hedging: Evidence from Asian oil-importing countries," Resources Policy, Elsevier, vol. 61(C), pages 479-488.
  36. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
  37. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
  38. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Cointegration Rank Testing Under Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1719-1760, December.
  39. Płuciennik Piotr, 2012. "Influence of the American Financial Market on Other Markets During the Subprime Crisis," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 19-30, December.
  40. Amel Melki & Ahmed Ghorbel, 2023. "Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models," Commodities, MDPI, vol. 2(3), pages 1-19, August.
  41. Sijie Yao & Hui Zou & Haipeng Xing, 2024. "L 1 Regularization for High-Dimensional Multivariate GARCH Models," Risks, MDPI, vol. 12(2), pages 1-28, February.
  42. Liu, Zhenhua & Tseng, Hui-Kuan & Wu, Jy S. & Ding, Zhihua, 2020. "Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects," Resources Policy, Elsevier, vol. 66(C).
  43. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
  44. repec:cte:wsrepe:ws141711 is not listed on IDEAS
  45. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
  46. Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2023. "Unveiling the diversification capabilities of carbon markets in NFT portfolios," Finance Research Letters, Elsevier, vol. 58(PD).
  47. Christian Hafner & Helmut Herwartz, 2008. "Analytical quasi maximum likelihood inference in multivariate volatility models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 219-239, March.
  48. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
  49. Hafner, Christian M., 2008. "Temporal aggregation of multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 142(1), pages 467-483, January.
  50. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
  51. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
  52. H. J. Turtle & Kainan Wang, 2014. "Modeling Conditional Covariances With Economic Information Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 217-236, April.
  53. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
  54. repec:bgu:wpaper:0608 is not listed on IDEAS
  55. Lee, Taehyun & Moutzouris, Ioannis C & Papapostolou, Nikos C & Fatouh, Mahmoud, 2023. "Foreign exchange hedging using regime-switching models: the case of pound sterling," Bank of England working papers 1042, Bank of England.
  56. Darolles, Serge & Francq, Christian & Laurent, Sébastien, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Journal of Econometrics, Elsevier, vol. 204(2), pages 223-247.
  57. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
  58. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
  59. Riccardo LUCCHETTI & Giulio PALOMBA, 2006. "Forecasting US bond yields at weekly frequency," Working Papers 261, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  60. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
  61. Valeria V. Lakshina, 2019. "Do Portfolio Investors Need To Consider The Asymmetry Of Returns On The Russian Stock Market?," HSE Working papers WP BRP 75/FE/2019, National Research University Higher School of Economics.
  62. Tule, Moses K. & Ndako, Umar B. & Onipede, Samuel F., 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, Elsevier, vol. 35(C), pages 57-65.
  63. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
  64. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
  65. Martin Vojtek, 2004. "Calibration of Interest Rate Models - Transition Market Case," Finance 0410015, University Library of Munich, Germany.
  66. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
  67. Irene Henriques & Perry Sadorsky, 2018. "Can Bitcoin Replace Gold in an Investment Portfolio?," JRFM, MDPI, vol. 11(3), pages 1-19, August.
  68. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
  69. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  70. Loening, Josef L., 2011. "Lao People’s Democratic Republic: responding to rice price inflation," MPRA Paper 33443, University Library of Munich, Germany.
  71. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
  72. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(2), pages 336-363, April.
  73. Oscar De la Torre Torres., 2013. "Orthogonal GARCH matrixes in the active portfolio management of defined benefit pension plans: A test for Michoacán," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 39(2), pages 119-144, Julio-Dic.
  74. Chakraborty, Sandip & Kakani, Ram Kumar & Sampath, Aravind, 2022. "Portfolio risk and stress across the business cycle," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
  75. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
  76. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
  77. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2020. "Affine multivariate GARCH models," Journal of Banking & Finance, Elsevier, vol. 118(C).
  78. Lütkepohl, Helmut & Velinov, Anton, 2016. "Structural Vector Autoregressions : Checking Identifying Long-Run Restrictions via Heteroskedasticity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 30, pages 377-392.
  79. Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
  80. Morelli, Giacomo, 2023. "Stochastic ordering of systemic risk in commodity markets," Energy Economics, Elsevier, vol. 117(C).
  81. Helmut Lütkepohl & Aleksei Netsunajev, 2015. "Structural Vector Autoregressions with Heteroskedasticity: A Comparison of Different Volatility Models," Discussion Papers of DIW Berlin 1464, DIW Berlin, German Institute for Economic Research.
  82. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
  83. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
  84. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  85. repec:hum:wpaper:sfb649dp2014-009 is not listed on IDEAS
  86. Ma, Rufei & Deng, Chengtao & Cai, Huan & Zhai, Pengxiang, 2019. "Does Shanghai-Hong Kong Stock Connect drive market comovement between Shanghai and Hong Kong: A new evidence," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  87. Fengler, Matthias & Polivka, Jeannine, 2021. "Proxy-identification of a structural MGARCH model for asset returns," Economics Working Paper Series 2103, University of St. Gallen, School of Economics and Political Science, revised Oct 2024.
  88. Sıtkı Gülten & Andrzej Ruszczyński, 2015. "Two-stage portfolio optimization with higher-order conditional measures of risk," Annals of Operations Research, Springer, vol. 229(1), pages 409-427, June.
  89. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
  90. repec:hum:wpaper:sfb649dp2015-015 is not listed on IDEAS
  91. Mthuli Ncube & Daniel Zerfu Gurara & Dawit B. Tessema, 2014. "Working Paper 205 - Volatility and Co-movement in Commodity Prices- New Evidence," Working Paper Series 2135, African Development Bank.
  92. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
  93. Kosater, Peter, 2006. "Cross-city hedging with weather derivatives using bivariate DCC GARCH models," Discussion Papers in Econometrics and Statistics 2/06, University of Cologne, Institute of Econometrics and Statistics.
  94. Jules Sadefo-Kamdem, 2011. "Downside Risk And Kappa Index Of Non-Gaussian Portfolio With Lpm," Working Papers hal-00733043, HAL.
  95. Claudio, Morana, 2015. "Semiparametric Estimation of Multivariate GARCH Models," Working Papers 317, University of Milano-Bicocca, Department of Economics, revised 10 Dec 2015.
  96. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
  97. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  98. Melanie-Kristin Beck & Bernd Hayo & Matthias Neuenkirch, 2013. "Central bank communication and correlation between financial markets: Canada and the United States," International Economics and Economic Policy, Springer, vol. 10(2), pages 277-296, June.
  99. Giulio Palomba, 2008. "Multivariate GARCH models and the Black-Litterman approach for tracking error constrained portfolios: an empirical analysis," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 10(4), pages 379-413.
  100. Henriques, Irene & Sadorsky, Perry, 2018. "Investor implications of divesting from fossil fuels," Global Finance Journal, Elsevier, vol. 38(C), pages 30-44.
  101. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
  102. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
  103. Karim M Abadir, 2023. "Explicit minimal representation of variance matrices, and its implication for dynamic volatility models," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 88-104.
  104. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying - the case of multivariate GARCH models," MPRA Paper 72197, University Library of Munich, Germany, revised 10 Jun 2016.
  105. Raza, Naveed & Ali, Sajid & Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur & Salman, Aneel, 2019. "Can alternative hedging assets add value to Islamic-conventional portfolio mix: Evidence from MGARCH models," Resources Policy, Elsevier, vol. 61(C), pages 210-230.
  106. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
  107. Kuang, Wei, 2023. "The equity-oil hedge: A comparison between volatility and alternative risk frameworks," Energy, Elsevier, vol. 271(C).
  108. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
  109. Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
  110. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2023. "Covariance dependent kernels, a Q-affine GARCH for multi-asset option pricing," International Review of Financial Analysis, Elsevier, vol. 87(C).
  111. Magnus, Jan R. & Pijls, Henk G.J. & Sentana, Enrique, 2021. "The Jacobian of the exponential function," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
  112. Fernanda Maria Müller & Marcelo Brutti Righi, 2024. "Comparison of Value at Risk (VaR) Multivariate Forecast Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 75-110, January.
  113. García-Ferrer, Antonio & González-Prieto, Ester, 2008. "A multivariate generalized independent factor GARCH model with an application to financial stock returns," DES - Working Papers. Statistics and Econometrics. WS ws087528, Universidad Carlos III de Madrid. Departamento de Estadística.
  114. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
  115. LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
  116. Jacek Osiewalski & Mateusz Pipień, 2005. "Bayesian Analysis of Dynamic Conditional Correlation Using Bivariate GARCH Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 13, pages 213-227, University of Lodz.
  117. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
  118. Jiang, Yonghong & Lie, Jiayi & Wang, Jieru & Mu, Jinqi, 2021. "Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective," Economic Modelling, Elsevier, vol. 95(C), pages 21-34.
  119. Stephen Hall & George Hondroyiannis, 2006. "Measuring the correlation of shocks between the EU15 and the new member countries," Economic Change and Restructuring, Springer, vol. 39(1), pages 19-34, June.
  120. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Generalized Dynamic Factor Model + GARCH Exploiting Multivariate Information for Univariate Prediction," LEM Papers Series 2006/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  121. Degiannakis, Stavros & Duffy, David & Filis, George, 2013. "Time-varying Business Cycles Synchronisation in Europe," MPRA Paper 52925, University Library of Munich, Germany.
  122. Stefan Bruder, 2018. "Inference for structural impulse responses in SVAR-GARCH models," ECON - Working Papers 281, Department of Economics - University of Zurich.
  123. Francisco Blasques & Enzo D'Innocenzo & Siem Jan Koopman, 2021. "Common and Idiosyncratic Conditional Volatility Factors: Theory and Empirical Evidence," Tinbergen Institute Discussion Papers 21-057/III, Tinbergen Institute.
  124. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
  125. Nikolaos A. Kyriazis, 2020. "Is Bitcoin Similar to Gold? An Integrated Overview of Empirical Findings," JRFM, MDPI, vol. 13(5), pages 1-19, May.
  126. Jarjour, Riad & Chan, Kung-Sik, 2020. "Dynamic conditional angular correlation," Journal of Econometrics, Elsevier, vol. 216(1), pages 137-150.
  127. Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar & Adekoya, Oluwasegun B. & Oteng-Abayie, Eric Fosu, 2023. "An analysis of the time-varying causality and dynamic correlation between green bonds and US gas prices," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
  128. Peter Boswijk, H. & van der Weide, Roy, 2011. "Method of moments estimation of GO-GARCH models," Journal of Econometrics, Elsevier, vol. 163(1), pages 118-126, July.
  129. Zexuan Yin & Paolo Barucca, 2022. "Neural Generalised AutoRegressive Conditional Heteroskedasticity," Papers 2202.11285, arXiv.org.
  130. Cui, Yan & Feng, Yun, 2020. "Composite hedge and utility maximization for optimal futures hedging," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 15-32.
  131. Jules Sadefo Kamdem, 2023. "Risk-Adjusted Performance And Semi-Moments Of Non-Gaussian Portfolio Returns Distributions," Working Papers hal-04134833, HAL.
  132. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
  133. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
  134. repec:hal:journl:peer-00732539 is not listed on IDEAS
  135. Rosenow, Bernd, 2008. "Determining the optimal dimensionality of multivariate volatility models with tools from random matrix theory," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 279-302, January.
  136. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
  137. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
  138. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
  139. Bhatia, Vaneet & Das, Debojyoti & Kumar, Surya Bhushan, 2020. "Hedging effectiveness of precious metals across frequencies: Evidence from Wavelet based Dynamic Conditional Correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
  140. Chakraborty, Sandip & Kakani, Ram Kumar, 2016. "Institutional investment, equity volume and volatility spillover: Causalities and asymmetries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 1-20.
  141. Cheng Yu & Dong Li & Feiyu Jiang & Ke Zhu, 2023. "Matrix GARCH Model: Inference and Application," Papers 2306.05169, arXiv.org.
  142. Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2023. "Stablecoins as a tool to mitigate the downside risk of cryptocurrency portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
  143. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
  144. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, Robert, 2010. "Determination of the Number of Common Stochastic Trends Under Conditional Heteroskedasticity/Determinación del número de tendencias estocásticas comunes bajo heteroscedasticidad condicional," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 519-552, Diciembre.
  145. Helmut Lütkepohl, 2012. "Identifying Structural Vector Autoregressions via Changes in Volatility," Discussion Papers of DIW Berlin 1259, DIW Berlin, German Institute for Economic Research.
  146. Bouazizi, Tarek & Galariotis, Emilios & Guesmi, Khaled & Makrychoriti, Panagiota, 2023. "Investigating the nature of interaction between crypto-currency and commodity markets," International Review of Financial Analysis, Elsevier, vol. 88(C).
  147. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
  148. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
  149. Umar, Zaghum & Hussain Shahzad, Syed Jawad & Kenourgios, Dimitris, 2019. "Hedging U.S. metals & mining Industry's credit risk with industrial and precious metals," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
  150. Zexuan Yin & Paolo Barucca, 2022. "Variational Heteroscedastic Volatility Model," Papers 2204.05806, arXiv.org.
  151. Rayadurgam, Vikram Chandramouli & Mangalagiri, Jayasree, 2023. "Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?," Finance Research Letters, Elsevier, vol. 54(C).
  152. Lucchetti, Riccardo & Palomba, Giulio, 2008. "Nonlinear Adjustment in US Bond Yields: an Empirical Analysis with Conditional Heteroskedasticity," MPRA Paper 11571, University Library of Munich, Germany.
  153. Sergio Alvares Maffra & John Armstrong & Teemu Pennanen, 2020. "Stochastic modeling of assets and liabilities with mortality risk," Papers 2005.09974, arXiv.org.
  154. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
  155. Fernandes, Marcelo & de Sa Mota, Bernardo & Rocha, Guilherme, 2005. "A multivariate conditional autoregressive range model," Economics Letters, Elsevier, vol. 86(3), pages 435-440, March.
  156. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effectiveness of global sectors in emerging and developed stock markets," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 92-117.
  157. St'ephane Chr'etien & Juan-Pablo Ortega, 2011. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Papers 1101.5475, arXiv.org.
  158. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
  159. Chen, Hao & Xu, Chao, 2022. "The impact of cryptocurrencies on China's carbon price variation during COVID-19: A quantile perspective," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
  160. García-Ferrer, Antonio & González-Prieto, Ester & Peña, Daniel, 2012. "A conditionally heteroskedastic independent factor model with an application to financial stock returns," International Journal of Forecasting, Elsevier, vol. 28(1), pages 70-93.
  161. Mollick, André Varella & Sakaki, Hamid, 2019. "Exchange rates, oil prices and world stock returns," Resources Policy, Elsevier, vol. 61(C), pages 585-602.
  162. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
  163. Lee, Hsiang-Tai, 2009. "Optimal futures hedging under jump switching dynamics," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 446-456, June.
  164. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
  165. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
  166. Bodnar, Olha & Bodnar, Taras & Gupta, Arjun K., 2010. "Estimation and inference for dependence in multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 869-881, April.
  167. Díaz, Antonio & Escribano, Ana & Esparcia, Carlos, 2024. "Sustainable risk preferences on asset allocation: a higher order optimal portfolio study," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.