IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2022010.html
   My bibliography  Save this paper

Dynamic score driven independent component analysis

Author

Listed:
  • Hafner, Christian M.

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Herwartz, Helmut

Abstract

A model for dynamic independent component analysis is introduced where the dynamics are driven by the score of the pseudo likelihood with respect to the rotation angle of model innovations. While conditional second moments are invariant with respect to rotations, higher conditional moments are not, which may have important implications for applications. The pseudo maximum likelihood estimator of the model is shown to be consistent and asymptotically normally distributed. A simulation study reports good finite sample properties of the estimator, including the case of a mis-specification of the innovation density. In an application to a bivariate exchange rate seriesof the Euro and the British Pound against the US Dollar, it is shown that the model-implied conditional portfolio kurtosis largely aligns with narratives on financial stress as a result of the global financial crisis in 2008, the European sovereign debt crisis (2010-2013) and early rumors signalling the UK to leave the European Union (2017). These insights are consistent with arecently proposed model that associates portfolio kurtosis with a geopolitical risk factor.

Suggested Citation

  • Hafner, Christian M. & Herwartz, Helmut, 2022. "Dynamic score driven independent component analysis," LIDAM Reprints ISBA 2022010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2022010
    DOI: https://doi.org/10.1080/07350015.2021.2013244
    Note: In: Journal of Business & Economic Statistics, 2022
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mathias Barkhagen & Brian Fleming & Sergio Garcia Quiles & Jacek Gondzio & Joerg Kalcsics & Jens Kroeske & Sotirios Sabanis & Arne Staal, 2019. "Optimising portfolio diversification and dimensionality," Papers 1906.00920, arXiv.org, revised Sep 2019.
    2. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    3. Hafner, Christian M. & Herwartz, Helmut, 2006. "Volatility impulse responses for multivariate GARCH models: An exchange rate illustration," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 719-740, August.
    4. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, September.
    5. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    6. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    7. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    8. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    9. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    10. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    11. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    12. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    13. Fabian Ackermann & Walt Pohl & Karl Schmedders, 2017. "Optimal and Naive Diversification in Currency Markets," Management Science, INFORMS, vol. 63(10), pages 3347-3360, October.
    14. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    15. Tao Pham Dinh & Yi-Shuai Niu, 2011. "An efficient DC programming approach for portfolio decision with higher moments," Computational Optimization and Applications, Springer, vol. 50(3), pages 525-554, December.
    16. Robert F. Engle & Susana Campos-Martins, 2020. "Measuring and Hedging Geopolitical Risk," NIPE Working Papers 08/2020, NIPE - Universidade do Minho.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    2. Blazsek, Szabolcs & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    4. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    5. Cheng Yan & Ji Yan, 2021. "Optimal and naive diversification in an emerging market: Evidence from China's A‐shares market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3740-3758, July.
    6. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    7. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    8. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    9. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    10. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    11. David E. Allen & Michael McAleer & Shelton Peiris & Abhay K. Singh, 2014. "Hedge Fund Portfolio Diversification Strategies across the GFC," Tinbergen Institute Discussion Papers 14-151/III, Tinbergen Institute.
    12. Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
    13. Alla Petukhina & Simon Trimborn & Wolfgang Karl Härdle & Hermann Elendner, 2021. "Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies," Quantitative Finance, Taylor & Francis Journals, vol. 21(11), pages 1825-1853, November.
    14. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    15. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Allen, D. & Lizieri, C. & Satchell, S., 2012. "Mean-Variance versus 1/N: What if we can forecast? (Updated 22nd December 2013)," Cambridge Working Papers in Economics 1244, Faculty of Economics, University of Cambridge.
    17. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    18. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    19. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    20. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2022010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.