IDEAS home Printed from https://ideas.repec.org/a/vrs/foeste/v12y2012i2p19-30n7.html
   My bibliography  Save this article

Influence of the American Financial Market on Other Markets During the Subprime Crisis

Author

Listed:
  • Płuciennik Piotr

    (Adam Mickiewicz University Faculty of Mathematics and Computer Science Laboratory of Financial Econometrics Umultowska 87, 61-614 Poznań, Poland)

Abstract

Subprime crisis which started in the USA in 2007 was the cause of the most significant economic disturbances since the Great Depression in 1930s. Soon it transmitted to other countries, including those in which banks were not engaged in the subprime mortgage market. The crisis hit various sectors of national economies and led to changing of the trends on the stock markets, which are connected to American capital market. In the following article we researched the influence of the American market on the other markets in the context of the financial crisis. Our analysis is based on the results obtained from the multivariate parametric models. Seeing that the data space is high-dimensional, we used GO-GARCH models introduced by van der Weide (2005) and Boswijk and van der Weide (2006).

Suggested Citation

  • Płuciennik Piotr, 2012. "Influence of the American Financial Market on Other Markets During the Subprime Crisis," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 19-30, December.
  • Handle: RePEc:vrs:foeste:v:12:y:2012:i:2:p:19-30:n:7
    DOI: 10.2478/v10031-012-0031-8
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/v10031-012-0031-8
    Download Restriction: no

    File URL: https://libkey.io/10.2478/v10031-012-0031-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Rajdeep Sengupta & Yu Man Tam, 2008. "The LIBOR-OIS spread as a summary indicator," Monetary Trends, Federal Reserve Bank of St. Louis, issue Nov.
    4. Frederic S. Mishkin, 2011. "Over the Cliff: From the Subprime to the Global Financial Crisis," Journal of Economic Perspectives, American Economic Association, vol. 25(1), pages 49-70, Winter.
    5. Roy van der Weide, 2004. "Wake me up before you GO-GARCH," Computing in Economics and Finance 2004 316, Society for Computational Economics.
    6. Martin Vojtek, 2004. "Calibration of Interest Rate Models - Transition Market Case," Finance 0410015, University Library of Munich, Germany.
    7. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    8. Carol Alexander, 2000. "Orthogonal Methods for Generating Large Positive Semi-Definite Covariance Matrices," ICMA Centre Discussion Papers in Finance icma-dp2000-06, Henley Business School, University of Reading.
    9. HAFNER, Christian & HERWARTZ, Helmut, 1998. "Volatility impulse response functions for multivariate GARCH models," LIDAM Discussion Papers CORE 1998047, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Cristiana Tudor, 2009. "Understanding the Roots of the US Subprime Crisis and its Subsequent Effects," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 12(31), pages 115-143, (1).
    11. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    12. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
    2. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    3. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    4. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    5. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Riccardo LUCCHETTI & Giulio PALOMBA, 2006. "Forecasting US bond yields at weekly frequency," Working Papers 261, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Manuel A. Hernandez & Raul Ibarra & Danilo R. Trupkin, 2014. "How far do shocks move across borders? Examining volatility transmission in major agricultural futures markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 301-325.
    9. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    10. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    11. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    12. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
    13. Melanie-Kristin Beck & Bernd Hayo & Matthias Neuenkirch, 2013. "Central bank communication and correlation between financial markets: Canada and the United States," International Economics and Economic Policy, Springer, vol. 10(2), pages 277-296, June.
    14. Bodnar, Olha & Bodnar, Taras & Gupta, Arjun K., 2010. "Estimation and inference for dependence in multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 869-881, April.
    15. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    16. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
    17. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    18. Sharma, Udayan & Karmakar, Madhusudan, 2023. "Measuring minimum variance hedging effectiveness: Traditional vs. sophisticated models," International Review of Financial Analysis, Elsevier, vol. 87(C).
    19. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    20. Jarjour, Riad & Chan, Kung-Sik, 2020. "Dynamic conditional angular correlation," Journal of Econometrics, Elsevier, vol. 216(1), pages 137-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:foeste:v:12:y:2012:i:2:p:19-30:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.