IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20060079.html
   My bibliography  Save this paper

Wake me up before you GO-GARCH

Author

Listed:
  • H. Peter Boswijk

    (Universiteit van Amsterdam)

  • Roy van der Weide

    (World Bank)

Abstract

In this paper we present a new three-step approach to the estimation of Generalized Orthogonal GARCH (GO-GARCH) models, as proposed by van der Weide (2002). The approach only requires (non-linear) least-squares methods in combination with univariate GARCH estimation, and as such is computationally attractive, especially in larger-dimensional systems, where a full likelihood optimization is often infeasible. The effectiveness of the method is investigated using Monte Carlo simulations as well as a number of empirical applications.

Suggested Citation

  • H. Peter Boswijk & Roy van der Weide, 2006. "Wake me up before you GO-GARCH," Tinbergen Institute Discussion Papers 06-079/4, Tinbergen Institute, revised 21 Sep 2006.
  • Handle: RePEc:tin:wpaper:20060079
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/06079.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    2. Tim Bollerslev, 1988. "On The Correlation Structure For The Generalized Autoregressive Conditional Heteroskedastic Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(2), pages 121-131, March.
    3. BAUWENS, Luc & LAURENT, Sébastien, 2002. "A new class of multivariate skew densities, with application to GARCH models," LIDAM Discussion Papers CORE 2002020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    5. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
    6. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    7. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.
    8. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarchella, Salma & Khalfaoui, Rabeh & Hammoudeh, Shawkat, 2024. "The safe haven, hedging, and diversification properties of oil, gold, and cryptocurrency for the G7 equity markets: Evidence from the pre- and post-COVID-19 periods," Research in International Business and Finance, Elsevier, vol. 67(PB).
    2. Mohamed Yousfi & Abderrazak Dhaoui & Houssam Bouzgarrou, 2021. "Risk Spillover during the COVID-19 Global Pandemic and Portfolio Management," JRFM, MDPI, vol. 14(5), pages 1-29, May.
    3. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    4. Płuciennik Piotr, 2012. "Influence of the American Financial Market on Other Markets During the Subprime Crisis," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 19-30, December.
    5. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    6. Irene Henriques & Perry Sadorsky, 2018. "Can Bitcoin Replace Gold in an Investment Portfolio?," JRFM, MDPI, vol. 11(3), pages 1-19, August.
    7. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Xin Zhang & Drew Creal & Siem Jan Koopman & Andre Lucas, 2011. "Modeling Dynamic Volatilities and Correlations under Skewness and Fat Tails," Tinbergen Institute Discussion Papers 11-078/2/DSF22, Tinbergen Institute.
    9. Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar & Adekoya, Oluwasegun B. & Oteng-Abayie, Eric Fosu, 2023. "An analysis of the time-varying causality and dynamic correlation between green bonds and US gas prices," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    10. Peter Boswijk, H. & van der Weide, Roy, 2011. "Method of moments estimation of GO-GARCH models," Journal of Econometrics, Elsevier, vol. 163(1), pages 118-126, July.
    11. Ali, Sajid & Raza, Naveed & Vinh Vo, Xuan & Le, Van, 2022. "Modelling the joint dynamics of financial assets using MGARCH family models: Insights into hedging and diversification strategies," Resources Policy, Elsevier, vol. 78(C).
    12. Chakraborty, Sandip & Kakani, Ram Kumar, 2016. "Institutional investment, equity volume and volatility spillover: Causalities and asymmetries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 1-20.
    13. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    14. Umar, Zaghum & Hussain Shahzad, Syed Jawad & Kenourgios, Dimitris, 2019. "Hedging U.S. metals & mining Industry's credit risk with industrial and precious metals," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    15. Abdul Aziz, Nor Syahilla & Vrontos, Spyridon & M. Hasim, Haslifah, 2019. "Evaluation of multivariate GARCH models in an optimal asset allocation framework," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 568-596.
    16. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    17. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    4. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    5. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    6. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    7. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
    8. repec:cte:wsrepe:24552 is not listed on IDEAS
    9. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    10. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    11. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
    12. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    14. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    15. repec:bgu:wpaper:0608 is not listed on IDEAS
    16. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    17. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    18. Chrétien, Stéphane & Ortega, Juan-Pablo, 2014. "Multivariate GARCH estimation via a Bregman-proximal trust-region method," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 210-236.
    19. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
    20. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
    21. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    22. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    Keywords

    Multivariate GARCH; Non-Linear Least-Squares; Maximum Likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20060079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.