IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp2455.html
   My bibliography  Save this paper

Proxy-identification of a structural MGARCH model for asset returns

Author

Listed:
  • Matthias R. Fengler

    (University of St. Gallen - SEPS: Economics and Political Sciences; Swiss Finance Institute)

  • Jeannine Polivka

    (University of St. Gallen)

Abstract

We extend the multivariate GARCH (MGARCH) specification for volatility modeling by developing a structural MGARCH model that targets the identification of shocks and volatility spillovers in a speculative return system. Similarly to the proxy-SVAR framework, we leverage auxiliary proxy variables to identify the underlying shock system. The estimation of structural parameters, including an orthogonal matrix, is achieved through techniques derived from Riemannian optimization. Our analysis of daily S&P 500 returns, 10-year Treasury yields, and the U.S. Dollar Index, employing news-driven instrument variables, identifies an equity and a bond market shock.

Suggested Citation

  • Matthias R. Fengler & Jeannine Polivka, 2024. "Proxy-identification of a structural MGARCH model for asset returns," Swiss Finance Institute Research Paper Series 24-55, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp2455
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4990401
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    4. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    5. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
    6. Christina D. Romer & David H. Romer, 2010. "The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks," American Economic Review, American Economic Association, vol. 100(3), pages 763-801, June.
    7. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    8. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
    9. Boussama, Farid & Fuchs, Florian & Stelzer, Robert, 2011. "Stationarity and geometric ergodicity of BEKK multivariate GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2331-2360, October.
    10. Cenedese, Gino & Mallucci, Enrico, 2016. "What moves international stock and bond markets?," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 94-113.
    11. James H. Stock & Mark W. Watson, 2018. "Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments," Economic Journal, Royal Economic Society, vol. 128(610), pages 917-948, May.
    12. Enzo Weber, 2010. "Structural Conditional Correlation," Journal of Financial Econometrics, Oxford University Press, vol. 8(3), pages 392-407, Summer.
    13. Roberto Rigobon & Brian Sack, 2003. "Measuring The Reaction of Monetary Policy to the Stock Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 639-669.
    14. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    15. Robert J. Shiller, 2017. "Narrative Economics," American Economic Review, American Economic Association, vol. 107(4), pages 967-1004, April.
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    17. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    18. Matthias R. Fengler & Helmut Herwartz, 2018. "Measuring Spot Variance Spillovers when (Co)variances are Time†varying – The Case of Multivariate GARCH Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(1), pages 135-159, February.
    19. John H. Boyd & Jian Hu & Ravi Jagannathan, 2005. "The Stock Market's Reaction to Unemployment News: Why Bad News Is Usually Good for Stocks," Journal of Finance, American Finance Association, vol. 60(2), pages 649-672, April.
    20. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    21. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    22. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    23. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    24. Carsten Jentsch & Kurt G. Lunsford, 2022. "Asymptotically Valid Bootstrap Inference for Proxy SVARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1876-1891, October.
    25. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    26. Christian Hafner & Helmut Herwartz, 2008. "Analytical quasi maximum likelihood inference in multivariate volatility models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 219-239, March.
    27. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    28. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    29. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    30. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
    31. Tim Bollerslev & Jia Li & Yuan Xue, 2018. "Volume, Volatility, and Public News Announcements," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2005-2041.
    32. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    33. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    34. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
    35. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengler, Matthias & Polivka, Jeannine, 2022. "Structural Volatility Impulse Response Analysis," Economics Working Paper Series 2211, University of St. Gallen, School of Economics and Political Science, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengler, Matthias & Polivka, Jeanine, 2022. "Identifying Structural Shocks to Volatility through a Proxy-MGARCH Model," VfS Annual Conference 2022 (Basel): Big Data in Economics 264010, Verein für Socialpolitik / German Economic Association.
    2. Fengler, Matthias & Polivka, Jeannine, 2022. "Structural Volatility Impulse Response Analysis," Economics Working Paper Series 2211, University of St. Gallen, School of Economics and Political Science, revised Nov 2022.
    3. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    4. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    5. Allan W. Gregory & James McNeil & Gregor W. Smith, 2024. "US fiscal policy shocks: Proxy‐SVAR overidentification via GMM," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 607-619, June.
    6. Herwartz, Helmut & Roestel, Jan, 2022. "Asset prices, financial amplification and monetary policy: Structural evidence from an identified multivariate GARCH model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying – the case of multivariate GARCH models," Economics Working Paper Series 1517, University of St. Gallen, School of Economics and Political Science.
    9. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
    10. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    11. Montiel Olea, José L. & Stock, James H. & Watson, Mark W., 2021. "Inference in Structural Vector Autoregressions identified with an external instrument," Journal of Econometrics, Elsevier, vol. 225(1), pages 74-87.
    12. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    13. Lütkepohl, Helmut & Netšunajev, Aleksei, 2015. "Structural vector autoregressions with heteroskedasticity: A comparison of different volatility models," SFB 649 Discussion Papers 2015-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    15. Dake Li & Mikkel Plagborg-Møller & Christian K. Wolf, 2021. "Local Projections vs. VARs: Lessons From Thousands of DGPs," Working Papers 2021-55, Princeton University. Economics Department..
    16. Cheng Yu & Dong Li & Feiyu Jiang & Ke Zhu, 2023. "Matrix GARCH Model: Inference and Application," Papers 2306.05169, arXiv.org.
    17. Bruns, Martin & Lütkepohl, Helmut, 2024. "Heteroskedastic proxy vector autoregressions: An identification-robust test for time-varying impulse responses in the presence of multiple proxies," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    18. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Mikkel Plagborg-Møller & Christian K. Wolf, 2022. "Instrumental Variable Identification of Dynamic Variance Decompositions," Journal of Political Economy, University of Chicago Press, vol. 130(8), pages 2164-2202.
    20. Giovanni Angelini & Luca Fanelli, 2019. "Exogenous uncertainty and the identification of structural vector autoregressions with external instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 951-971, September.

    More about this item

    Keywords

    identification; Riemannian optimization; structural MGARCH; structural modeling; variance decomposition; volatility spillovers;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp2455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.