My bibliography
Save this item
A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gabriel Henrique Danielsson & Leonardo Nogueira Fontoura da Silva & Joelson Lopes da Paixão & Alzenira da Rosa Abaide & Nelson Knak Neto, 2024. "Rules-Based Energy Management System for an EV Charging Station Nanogrid: A Stochastic Analysis," Energies, MDPI, vol. 18(1), pages 1-21, December.
- Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
- Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
- Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
- Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
- Javier Huertas Tato & Miguel Centeno Brito, 2018. "Using Smart Persistence and Random Forests to Predict Photovoltaic Energy Production," Energies, MDPI, vol. 12(1), pages 1-12, December.
- Yukta Mehta & Rui Xu & Benjamin Lim & Jane Wu & Jerry Gao, 2023. "A Review for Green Energy Machine Learning and AI Services," Energies, MDPI, vol. 16(15), pages 1-30, July.
- Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
- Thaker, Jayesh & Höller, Robert, 2024. "Hybrid model for intra-day probabilistic PV power forecast," Renewable Energy, Elsevier, vol. 232(C).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
- Adolfo Crespo Márquez & Antonio de la Fuente Carmona & Sara Antomarioni, 2019. "A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency," Energies, MDPI, vol. 12(18), pages 1-25, September.
- Azhar Ahmed Mohammed & Zeyar Aung, 2016. "Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation," Energies, MDPI, vol. 9(12), pages 1-17, December.
- Md Tahmid Hussain & Adil Sarwar & Mohd Tariq & Shabana Urooj & Amal BaQais & Md. Alamgir Hossain, 2023. "An Evaluation of ANN Algorithm Performance for MPPT Energy Harvesting in Solar PV Systems," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
- Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
- Li Wang & Jiguang Yue & Yongqing Su & Feng Lu & Qiang Sun, 2017. "A Novel Remaining Useful Life Prediction Approach for Superbuck Converter Circuits Based on Modified Grey Wolf Optimizer-Support Vector Regression," Energies, MDPI, vol. 10(4), pages 1-22, April.
- Jizhong Xue & Zaohui Kang & Chun Sing Lai & Yu Wang & Fangyuan Xu & Haoliang Yuan, 2023. "Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)," Energies, MDPI, vol. 16(11), pages 1-18, May.
- du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
- Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
- Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
- Stefano Massucco & Gabriele Mosaico & Matteo Saviozzi & Federico Silvestro, 2019. "A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach," Energies, MDPI, vol. 12(7), pages 1-21, April.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
- Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2021. "Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants," Energies, MDPI, vol. 14(11), pages 1-16, May.