A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
- Chen, Ji-Long & Liu, Hong-Bin & Wu, Wei & Xie, De-Ti, 2011. "Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study," Renewable Energy, Elsevier, vol. 36(1), pages 413-420.
- Kans, Mirka & Ingwald, Anders, 2008. "Common database for cost-effective improvement of maintenance performance," International Journal of Production Economics, Elsevier, vol. 113(2), pages 734-747, June.
- Claudia Diamantini & Domenico Potena & Emanuele Storti, 2013. "A virtual mart for knowledge discovery in databases," Information Systems Frontiers, Springer, vol. 15(3), pages 447-463, July.
- Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
- Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
- Hong Zhang & Lixing Chen & Yong Qu & Guo Zhao & Zhenwei Guo, 2014. "Support Vector Regression Based on Grid-Search Method for Short-Term Wind Power Forecasting," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-11, June.
- Olivencia Polo, Fernando A. & Ferrero Bermejo, Jesús & Gómez Fernández, Juan F. & Crespo Márquez, Adolfo, 2015. "Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models," Renewable Energy, Elsevier, vol. 81(C), pages 227-238.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Moutis, Panayiotis & Skarvelis-Kazakos, Spyros & Brucoli, Maria, 2016. "Decision tree aided planning and energy balancing of planned community microgrids," Applied Energy, Elsevier, vol. 161(C), pages 197-205.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ioannis Mallidis & Volha Yakavenka & Anastasios Konstantinidis & Nikolaos Sariannidis, 2021. "A Goal Programming-Based Methodology for Machine Learning Model Selection Decisions: A Predictive Maintenance Application," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
- Jonghoon Ahn, 2022. "A Network-Based Strategy to Increase the Sustainability of Building Supply Air Systems Responding to Unexpected Temperature Patterns," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
- Aldemar Leguizamon-Perilla & Juan S. Rodriguez-Bernal & Laidi Moralez-Cruz & Nidia Isabel Farfán-Martinez & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortua, 2023. "Digitalisation and Modernisation of Hydropower Operating Facilities to Support the Colombian Energy Mix Flexibility," Energies, MDPI, vol. 16(7), pages 1-17, March.
- Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
- Lee-Yong Sung & Jonghoon Ahn, 2020. "Comparative Analyses of Energy Efficiency between on-Demand and Predictive Controls for Buildings’ Indoor Thermal Environment," Energies, MDPI, vol. 13(5), pages 1-15, March.
- Adolfo Crespo Marquez & Juan Francisco Gomez Fernandez & Pablo Martínez-Galán Fernández & Antonio Guillen Lopez, 2020. "Maintenance Management through Intelligent Asset Management Platforms (IAMP). Emerging Factors, Key Impact Areas and Data Models," Energies, MDPI, vol. 13(15), pages 1-19, July.
- Zheng, Xiaolei & Nguyen, Hoang & Bui, Xuan-Nam, 2021. "Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model," Resources Policy, Elsevier, vol. 74(C).
- Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
- Sara Antomarioni & Marjorie Maria Bellinello & Maurizio Bevilacqua & Filippo Emanuele Ciarapica & Renan Favarão da Silva & Gilberto Francisco Martha de Souza, 2020. "A Data-Driven Approach to Extend Failure Analysis: A Framework Development and a Case Study on a Hydroelectric Power Plant," Energies, MDPI, vol. 13(23), pages 1-16, December.
- Jonghoon Ahn, 2023. "An Adaptive Control Model for Thermal Environmental Factors to Supplement the Sustainability of a Small-Sized Factory," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
- Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
- Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
- Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
- Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
- Peters, Lennart & Madlener, Reinhard, 2017.
"Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants,"
Applied Energy, Elsevier, vol. 199(C), pages 264-280.
- Peters, Lennart & Madlener, Reinhard, 2016. "Economic Evaluation of Maintenance Strategies for Ground-Mounted Solar Photovoltaic Plants," FCN Working Papers 8/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
- Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
- Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
- Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
More about this item
Keywords
asset management; maintenance management; data mining; artificial intelligence; energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3454-:d:265067. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.