IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p26-d1552967.html
   My bibliography  Save this article

Rules-Based Energy Management System for an EV Charging Station Nanogrid: A Stochastic Analysis

Author

Listed:
  • Gabriel Henrique Danielsson

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil)

  • Leonardo Nogueira Fontoura da Silva

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil)

  • Joelson Lopes da Paixão

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil)

  • Alzenira da Rosa Abaide

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil)

  • Nelson Knak Neto

    (Academic Coordination, Federal University of Santa Maria, Cachoeira do Sul 96503-205, Rio Grande do Sul, Brazil)

Abstract

The article presents the development of a Rules-Based Energy Management System for a nanogrid that serves an electric vehicle charging station. This nanogrid is composed of photovoltaic generation, a wind turbine, a battery energy storage system, and a fast electric vehicle charger. The objective is to prioritize the use of renewable energy sources, reducing costs and promoting energy efficiency. The methodology includes forecasting models based on an Artificial Neural Network for photovoltaic generation, a parametric estimation for wind generation, and a Monte Carlo simulation to predict the energy consumption of electric vehicles. The developed algorithm makes decisions every 15 min, considering variables such as energy tariff, battery state of charge, renewable generation forecast, and energy consumption forecast. The results showed that the system adequately balances energy generation, consumption, and storage, even under forecasting uncertainties. The use of the Monte Carlo simulation was crucial for evaluating the financial impacts of forecast errors, enabling robust decision-making. This energy management system proved to be effective and sustainable for nanogrids dedicated to electric vehicle charging, with the potential to reduce operational costs and increase energy reliability and the use of renewable energy sources.

Suggested Citation

  • Gabriel Henrique Danielsson & Leonardo Nogueira Fontoura da Silva & Joelson Lopes da Paixão & Alzenira da Rosa Abaide & Nelson Knak Neto, 2024. "Rules-Based Energy Management System for an EV Charging Station Nanogrid: A Stochastic Analysis," Energies, MDPI, vol. 18(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:26-:d:1552967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
    2. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    3. Saugat Upadhyay & Ibrahim Ahmed & Lucian Mihet-Popa, 2024. "Energy Management System for an Industrial Microgrid Using Optimization Algorithms-Based Reinforcement Learning Technique," Energies, MDPI, vol. 17(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    3. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    4. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    5. Lingling Hu & Junming Zhou & Feng Jiang & Guangming Xie & Jie Hu & Qinglie Mo, 2023. "Research on Optimization of Valley-Filling Charging for Vehicle Network System Based on Multi-Objective Optimization," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    6. Irina Picioroaga & Madalina Luca & Andrei Tudose & Dorian Sidea & Mircea Eremia & Constantin Bulac, 2023. "Resilience-Driven Optimal Sizing of Energy Storage Systems in Remote Microgrids," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    7. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    8. Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    11. Hamed Binqadhi & Waleed M. Hamanah & Md Shafiullah & Md Shafiul Alam & Mohammad M. AlMuhaini & Mohammad A. Abido, 2024. "A Comprehensive Survey on Advancement and Challenges of DC Microgrid Protection," Sustainability, MDPI, vol. 16(14), pages 1-22, July.
    12. Azhar Ahmed Mohammed & Zeyar Aung, 2016. "Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation," Energies, MDPI, vol. 9(12), pages 1-17, December.
    13. Zhe Chai & Yihan Zhang & Lanyi Wei & Junhui Liu & Yao Lu & Chunzheng Tian & Zhaoyuan Wu, 2024. "Value Evaluation Model of Multi-Temporal Energy Storage for Flexibility Provision in Microgrids," Energies, MDPI, vol. 17(9), pages 1-16, April.
    14. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    15. Jingang Han & Shiwei Lin & Boyu Pu, 2024. "Hierarchical Energy Management of DC Microgrid with Photovoltaic Power Generation and Energy Storage for 5G Base Station," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    16. Yukta Mehta & Rui Xu & Benjamin Lim & Jane Wu & Jerry Gao, 2023. "A Review for Green Energy Machine Learning and AI Services," Energies, MDPI, vol. 16(15), pages 1-30, July.
    17. Adolfo Crespo Márquez & Antonio de la Fuente Carmona & Sara Antomarioni, 2019. "A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency," Energies, MDPI, vol. 12(18), pages 1-25, September.
    18. Thaker, Jayesh & Höller, Robert, 2024. "Hybrid model for intra-day probabilistic PV power forecast," Renewable Energy, Elsevier, vol. 232(C).
    19. Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
    20. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:26-:d:1552967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.