IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p459-d94830.html
   My bibliography  Save this article

A Novel Remaining Useful Life Prediction Approach for Superbuck Converter Circuits Based on Modified Grey Wolf Optimizer-Support Vector Regression

Author

Listed:
  • Li Wang

    (College of Electronic and Information Engineering, Tongji University, No. 4800, Cao’an Highway, Shanghai 201804, China)

  • Jiguang Yue

    (College of Electronic and Information Engineering, Tongji University, No. 4800, Cao’an Highway, Shanghai 201804, China)

  • Yongqing Su

    (College of Electronic and Information Engineering, Tongji University, No. 4800, Cao’an Highway, Shanghai 201804, China)

  • Feng Lu

    (School of Ocean and Earth Science, Tongji University, No. 1239, Siping Road, Shanghai 200092, China)

  • Qiang Sun

    (College of Electronic and Information Engineering, Tongji University, No. 4800, Cao’an Highway, Shanghai 201804, China)

Abstract

The reliability of power packs is very important for the performance of electronic equipment and ensuring the reliability of power electronic circuits is especially vital for equipment security. An alteration in the converter component parameter can lead to the decline of the power supply quality. In order to effectively prevent failure and estimate the remaining useful life (RUL) of superbuck converters, a circuit failure prognostics framework is proposed in this paper. We employ the average value and ripple value of circuit output voltage as a feature set to calculate the Mahalanobis distance (MD) in order to reflect the health status of the circuit. Time varying MD sets form the circuit state time series. According to the working condition time series that have been obtained, we can predict the later situation with support vector regression (SVR). SVR has been improved by a modified grey wolf optimizer (MGWO) algorithm before estimating the RUL. This is the first attempt to apply the modified version of the grey wolf optimizer (GWO) to circuit prognostics and system health management (PHM). Subsequently, benchmark functions have been used to validate the performance of the MGWO. Finally, the simulation results of comparative experiments demonstrate that MGWO-SVR can predict the RUL of circuits with smaller error and higher prediction precision.

Suggested Citation

  • Li Wang & Jiguang Yue & Yongqing Su & Feng Lu & Qiang Sun, 2017. "A Novel Remaining Useful Life Prediction Approach for Superbuck Converter Circuits Based on Modified Grey Wolf Optimizer-Support Vector Regression," Energies, MDPI, vol. 10(4), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:459-:d:94830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
    2. Cheng-Ming Lee & Chia-Nan Ko, 2016. "Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network," Energies, MDPI, vol. 9(12), pages 1-15, November.
    3. Yan Hong Chen & Wei-Chiang Hong & Wen Shen & Ning Ning Huang, 2016. "Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm," Energies, MDPI, vol. 9(2), pages 1-13, January.
    4. Li-Ling Peng & Guo-Feng Fan & Min-Liang Huang & Wei-Chiang Hong, 2016. "Hybridizing DEMD and Quantum PSO with SVR in Electric Load Forecasting," Energies, MDPI, vol. 9(3), pages 1-20, March.
    5. Qian Zhang & Kin Keung Lai & Dongxiao Niu & Qiang Wang & Xuebin Zhang, 2012. "A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power," Energies, MDPI, vol. 5(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Methodologies in Smart Grid-Integrated Doubly Fed Induction Generator Design Optimization and Reliability Assessment: A Review," Energies, MDPI, vol. 15(19), pages 1-39, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    2. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    5. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    6. Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
    7. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    8. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    9. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    10. Shi, Yong & Ren, Xinyue & Guo, Kun & Zhou, Yi & Wang, Jun, 2020. "Research on the economic development pattern of Chinese counties based on electricity consumption," Energy Policy, Elsevier, vol. 147(C).
    11. Javier Contreras, 2017. "Forecasting Models of Electricity Prices," Energies, MDPI, vol. 10(2), pages 1-2, January.
    12. Poonpong Suksawang & Sukonthip Suphachan & Kanokkarn Kaewnuch, 2018. "Electricity Consumption Forecasting in Thailand using Hybrid Model SARIMA and Gaussian Process with Combine Kernel Function Technique," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 98-109.
    13. Ying-Yi Hong & Ti-Hsuan Yu & Ching-Yun Liu, 2013. "Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition," Energies, MDPI, vol. 6(12), pages 1-16, November.
    14. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    15. Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    16. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    17. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    18. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.
    19. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    20. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:459-:d:94830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.