IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1298-d220020.html
   My bibliography  Save this article

A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach

Author

Listed:
  • Stefano Massucco

    (Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

  • Gabriele Mosaico

    (Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

  • Matteo Saviozzi

    (Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

  • Federico Silvestro

    (Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

Abstract

PhotoVoltaic (PV) plants can provide important economic and environmental benefits to electric systems. On the other hand, the variability of the solar source leads to technical challenges in grid management as PV penetration rates increase continuously. For this reason, PV power forecasting represents a crucial tool for uncertainty management to ensure system stability. In this paper, a novel hybrid methodology for the PV forecasting is presented. The proposed approach can exploit clear-sky models or an ensemble of artificial neural networks, according to day-ahead weather forecast. In particular, the selection among these techniques is performed through a decision tree approach, which is designed to choose the best method among those aforementioned. The presented methodology has been validated on a real PV plant with very promising results.

Suggested Citation

  • Stefano Massucco & Gabriele Mosaico & Matteo Saviozzi & Federico Silvestro, 2019. "A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach," Energies, MDPI, vol. 12(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1298-:d:220020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
    2. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    3. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    4. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    5. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    6. Ogliari, Emanuele & Dolara, Alberto & Manzolini, Giampaolo & Leva, Sonia, 2017. "Physical and hybrid methods comparison for the day ahead PV output power forecast," Renewable Energy, Elsevier, vol. 113(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    2. Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    3. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    4. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    5. Leon Fidele Nishimwe H. & Sung-Guk Yoon, 2021. "Combined Optimal Planning and Operation of a Fast EV-Charging Station Integrated with Solar PV and ESS," Energies, MDPI, vol. 14(11), pages 1-18, May.
    6. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    7. Stefano Bianchi & Allegra De Filippo & Sandro Magnani & Gabriele Mosaico & Federico Silvestro, 2021. "VIRTUS Project: A Scalable Aggregation Platform for the Intelligent Virtual Management of Distributed Energy Resources," Energies, MDPI, vol. 14(12), pages 1-31, June.
    8. Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
    9. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    10. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    11. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    12. Thomas Price & Gordon Parker & Gail Vaucher & Robert Jane & Morris Berman, 2022. "Microgrid Energy Management during High-Stress Operation," Energies, MDPI, vol. 15(18), pages 1-11, September.
    13. Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    3. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    4. Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.
    5. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    6. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    7. Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    8. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    9. Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
    10. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    12. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George Anders, 2023. "Deep and Machine Learning Models to Forecast Photovoltaic Power Generation," Energies, MDPI, vol. 16(10), pages 1-24, May.
    13. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    14. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    15. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    16. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    17. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    18. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    20. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1298-:d:220020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.