IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1660-d115856.html
   My bibliography  Save this article

Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan

Author

Listed:
  • Chih-Chiang Wei

    (Department of Marine Environmental Informatics, National Taiwan Ocean University, No. 2, Beining Rd., Jhongjheng District, Keelung City 20224, Taiwan)

Abstract

In this paper, forecasting models were constructed to estimate surface solar radiation on an hourly basis and the solar irradiance received by solar panels at different tilt angles, to enhance the capability of photovoltaic systems by estimating the amount of electricity they generate, thereby improving the reliability of the power they supply. The study site was Tainan in southern Taiwan, which receives abundant sunlight because of its location at a latitude of approximately 23°. Four forecasting models of surface solar irradiance were constructed, using the multilayer perceptron (MLP), random forests (RF), k -nearest neighbors ( k NN), and linear regression (LR), algorithms, respectively. The forecast horizon ranged from 1 to 12 h. The findings are as follows: first, solar irradiance was effectively estimated when a combination of ground weather data and solar position data was applied. Second, the mean absolute error was higher in MLP than in RF and kNN, and LR had the worst predictive performance. Third, the observed total solar irradiance was 1.562 million w/m 2 per year when the solar-panel tilt angle was 0° (i.e., the non-tilted position) and peaked at 1.655 million w/m 2 per year when the angle was 20–22°. The level of the irradiance was almost the same when the solar-panel tilt angle was 0° as when the angle was 41°. In summary, the optimal solar-panel tilt angle in Tainan was 20–22°.

Suggested Citation

  • Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1660-:d:115856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
    2. Shafiullah, G.M., 2016. "Hybrid renewable energy integration (HREI) system for subtropical climate in Central Queensland, Australia," Renewable Energy, Elsevier, vol. 96(PA), pages 1034-1053.
    3. Chen, S.X. & Gooi, H.B. & Wang, M.Q., 2013. "Solar radiation forecast based on fuzzy logic and neural networks," Renewable Energy, Elsevier, vol. 60(C), pages 195-201.
    4. Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
    5. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    6. Chih-Chiang Wei & Nien-Sheng Hsu, 2008. "Multireservoir Flood-Control Optimization with Neural-Based Linear Channel Level Routing Under Tidal Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1625-1647, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gi Yong Kim & Doo Sol Han & Zoonky Lee, 2020. "Solar Panel Tilt Angle Optimization Using Machine Learning Model: A Case Study of Daegu City, South Korea," Energies, MDPI, vol. 13(3), pages 1-13, January.
    2. Chih-Chiang Wei & Yen-Chen Yang, 2023. "A Global Solar Radiation Forecasting System Using Combined Supervised and Unsupervised Learning Models," Energies, MDPI, vol. 16(23), pages 1-18, November.
    3. Zhenyu Wang & Cuixia Tian & Qibing Zhu & Min Huang, 2018. "Hourly Solar Radiation Forecasting Using a Volterra-Least Squares Support Vector Machine Model Combined with Signal Decomposition," Energies, MDPI, vol. 11(1), pages 1-21, January.
    4. Zina Boussaada & Octavian Curea & Ahmed Remaci & Haritza Camblong & Najiba Mrabet Bellaaj, 2018. "A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation," Energies, MDPI, vol. 11(3), pages 1-21, March.
    5. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2018. "Data Science and Big Data in Energy Forecasting," Energies, MDPI, vol. 11(11), pages 1-2, November.
    6. Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
    7. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    8. Yasemin Ayaz Atalan & Abdulkadir Atalan, 2023. "Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    9. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    10. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
    11. Ronewa Collen Nemalili & Lordwell Jhamba & Joseph Kiprono Kirui & Caston Sigauke, 2023. "Nowcasting Hourly-Averaged Tilt Angles of Acceptance for Solar Collector Applications Using Machine Learning Models," Energies, MDPI, vol. 16(2), pages 1-19, January.
    12. Christil Pasion & Torrey Wagner & Clay Koschnick & Steven Schuldt & Jada Williams & Kevin Hallinan, 2020. "Machine Learning Modeling of Horizontal Photovoltaics Using Weather and Location Data," Energies, MDPI, vol. 13(10), pages 1-14, May.
    13. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
    2. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    5. Fouad Agramelal & Mohamed Sadik & Youssef Moubarak & Saad Abouzahir, 2023. "Smart Street Light Control: A Review on Methods, Innovations, and Extended Applications," Energies, MDPI, vol. 16(21), pages 1-42, November.
    6. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    7. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    8. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    9. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    10. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    11. X. Wang & R. Zhao & Y. Hao, 2011. "Flood Control Operations Based on the Theory of Variable Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 777-792, February.
    12. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    13. Shaker, Hamid & Manfre, Daniel & Zareipour, Hamidreza, 2020. "Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites," Renewable Energy, Elsevier, vol. 147(P1), pages 1861-1869.
    14. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    15. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    16. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    17. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    18. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    19. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    20. Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1660-:d:115856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.