IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v13y1979i3p243-257.html
   My bibliography  Save this item

A theoretical and empirical model of trip chaining behavior

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Robert B Noland & John V Thomas, 2007. "Multivariate Analysis of Trip-Chaining Behavior," Environment and Planning B, , vol. 34(6), pages 953-970, December.
  2. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
  3. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
  4. Lee, Ming S. & Chung, Jin-Hyuk & McNally, Michael G., 2002. "An Empirical Investigation of the Underlying Behavioral Processes of Trip Chaining," University of California Transportation Center, Working Papers qt2gt6s9s9, University of California Transportation Center.
  5. Zong, Fang & Li, Yu-Xuan & Zeng, Meng, 2023. "Developing a carbon emission charging scheme considering mobility as a service," Energy, Elsevier, vol. 267(C).
  6. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
  7. Lopes, Miguel & Dias, Ana Mélice, 2022. "Changing perspectives in times of crisis. The impact of COVID-19 on territorial accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 285-301.
  8. Jed A. Long & Jinhyung Lee & Darja Reuschke, 2023. "Activity graphs: Spatial graphs as a framework for quantifying individual mobility," Journal of Geographical Systems, Springer, vol. 25(3), pages 377-402, July.
  9. Su, Fengming & Bell, Michael G.H., 2009. "Transport for older people: Characteristics and solutions," Research in Transportation Economics, Elsevier, vol. 25(1), pages 46-55.
  10. Krygsman, Stephan & Arentze, Theo & Timmermans, Harry, 2007. "Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 913-933, December.
  11. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
  12. Brooks, Charles M. & Kaufmann, Patrick J. & Lichtenstein, Donald R., 2008. "Trip chaining behavior in multi-destination shopping trips: A field experiment and laboratory replication," Journal of Retailing, Elsevier, vol. 84(1), pages 29-38.
  13. Shuai Yu & Bin Li & Dongmei Liu, 2023. "Exploring the Public Health of Travel Behaviors in High-Speed Railway Environment during the COVID-19 Pandemic from the Perspective of Trip Chain: A Case Study of Beijing–Tianjin–Hebei Urban Agglomera," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
  14. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
  15. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.
  16. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
  17. Manoj, M. & Verma, Ashish, 2015. "Activity–travel behaviour of non-workers from Bangalore City in India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 400-424.
  18. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
  19. Kingham, Simon & Sabel, Clive E. & Bartie, Phil, 2011. "The impact of the ‘school run’ on road traffic accidents: A spatio-temporal analysis," Journal of Transport Geography, Elsevier, vol. 19(4), pages 705-711.
  20. Seongman Jang & Youngsoo An & Changhyo Yi & Seungil Lee, 2017. "Assessing the spatial equity of Seoul’s public transportation using the Gini coefficient based on its accessibility," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(1), pages 91-107, January.
  21. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
  22. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
  23. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
  24. Chen, Quizi, 2001. "An Exploration of Activity Scheduling and Rescheduling Processes," University of California Transportation Center, Working Papers qt9kb4q6vt, University of California Transportation Center.
  25. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 0. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 0, pages 1-22.
  26. Basil Schmid & Milos Balac & Kay W. Axhausen, 2019. "Post-Car World: data collection methods and response behavior in a multi-stage travel survey," Transportation, Springer, vol. 46(2), pages 425-492, April.
  27. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
  28. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
  29. Ming Lee & Michael McNally, 2006. "An empirical investigation on the dynamic processes of activity scheduling and trip chaining," Transportation, Springer, vol. 33(6), pages 553-565, November.
  30. Bhat, Chandra R., 1997. "Work travel mode choice and number of non-work commute stops," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 41-54, February.
  31. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1993. "Computational-Process Modelling of Household Activity Scheduling," University of California Transportation Center, Working Papers qt0zf9w0bs, University of California Transportation Center.
  32. Mahdieh Allahviranloo & Thomas Bonet & Jérémy Diez, 2021. "Introducing shared life experience metric in urban planning," Transportation, Springer, vol. 48(3), pages 1125-1148, June.
  33. Stephan Brunow & Manuela Gründer, 2013. "The impact of activity chaining on the duration of daily activities," Transportation, Springer, vol. 40(5), pages 981-1001, September.
  34. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
  35. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
  36. Allahviranloo, Mahdieh & Aissaoui, Leila, 2019. "A comparison of time-use behavior in metropolitan areas using pattern recognition techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 271-287.
  37. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
  38. Tim Schwanen & Martin Dijst & Frans M Dieleman, 2002. "A Microlevel Analysis of Residential Context and Travel Time," Environment and Planning A, , vol. 34(8), pages 1487-1507, August.
  39. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
  40. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
  41. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
  42. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
  43. François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
  44. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).
  45. Fujii, Satoshi & Kitamura, Ryuichi, 2000. "Evaluation of trip-inducing effects of new freeways using a structural equations model system of commuters' time use and travel," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 339-354, June.
  46. Kevin Krizek, 2003. "Neighborhood services, trip purpose, and tour-based travel," Transportation, Springer, vol. 30(4), pages 387-410, November.
  47. Yoram Shiftan & Moshe Ben-Akiva, 2011. "A practical policy-sensitive, activity-based, travel-demand model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 517-541, December.
  48. John Gunnar Carlsson & Mehdi Behroozi & Raghuveer Devulapalli & Xiangfei Meng, 2016. "Household-Level Economies of Scale in Transportation," Operations Research, INFORMS, vol. 64(6), pages 1372-1387, December.
  49. Giusy Di Lorenzo & Jonathan Reades & Francesco Calabrese & Carlo Ratti, 2012. "Predicting Personal Mobility with Individual and Group Travel Histories," Environment and Planning B, , vol. 39(5), pages 838-857, October.
  50. Golledge, Reginald G. & Kwan, Mei-Po & Garling, Tommy, 1991. "Computational-Process Modelling of Travel Decisions: Empirical Tests," University of California Transportation Center, Working Papers qt97j2x1bk, University of California Transportation Center.
  51. Schmid, Basil & Axhausen, Kay W., 2019. "In-store or online shopping of search and experience goods: A hybrid choice approach," Journal of choice modelling, Elsevier, vol. 31(C), pages 156-180.
  52. Wang, Donggen & Borgers, Aloys & Oppewal, Harmen & Timmermans, Harry, 2000. "A stated choice approach to developing multi-faceted models of activity behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(8), pages 625-643, November.
  53. Takahashi, Takaaki, 2013. "Agglomeration in a city with choosy consumers under imperfect information," Journal of Urban Economics, Elsevier, vol. 76(C), pages 28-42.
  54. T Gärling & T Kalén & J Romanus & M Selart & B Vilhelmson, 1998. "Computer Simulation of Household Activity Scheduling," Environment and Planning A, , vol. 30(4), pages 665-679, April.
  55. Maya Abou-Zeid & Moshe Ben-Akiva, 2012. "Well-being and activity-based models," Transportation, Springer, vol. 39(6), pages 1189-1207, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.