IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt0zf9w0bs.html
   My bibliography  Save this paper

Computational-Process Modelling of Household Activity Scheduling

Author

Listed:
  • Garling, Tommy
  • Kwan, Mei-Po
  • Golledge, Reginald G.

Abstract

Models of households' travel choices are an important focus of research. For some time it has been realized that such models need to incorporate how travel depends on activity choices. It is argued that production system models constitute an alternative or necessary complementary approach if the goal is to develop models of interdependent activity and travel choices, or activity scheduling, which are based on behavioral-science theories of higher cognitive processes. Several computational-process models (CPMs) which implement production systems as computer programs are reviewed. Currently, no encompassing CPM exists but some may be possible to integrate in a descriptive model of activity scheduling.

Suggested Citation

  • Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1993. "Computational-Process Modelling of Household Activity Scheduling," University of California Transportation Center, Working Papers qt0zf9w0bs, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt0zf9w0bs
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0zf9w0bs.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    2. D Damm & S R Lerman, 1981. "A Theory of Activity Scheduling Behavior," Environment and Planning A, , vol. 13(6), pages 703-718, June.
    3. Janson, Bruce N. & Southworth, Frank, 1992. "Estimating departure times from traffic counts using dynamic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 3-16, February.
    4. Kitamura, Ryuichi, 1984. "A model of daily time allocation to discretionary out-of-home activities and trips," Transportation Research Part B: Methodological, Elsevier, vol. 18(3), pages 255-266, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.
    2. Golledge, Reginald G. & Kwan, Mei-Po & Garling, Tommy, 1991. "Computational-Process Modelling of Travel Decisions: Empirical Tests," University of California Transportation Center, Working Papers qt97j2x1bk, University of California Transportation Center.
    3. Chen, Quizi, 2001. "An Exploration of Activity Scheduling and Rescheduling Processes," University of California Transportation Center, Working Papers qt9kb4q6vt, University of California Transportation Center.
    4. Kockelman, Kara Maria, 2001. "A model for time- and budget-constrained activity demand analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 255-269, March.
    5. Fujii, Satoshi & Kitamura, Ryuichi, 2000. "Evaluation of trip-inducing effects of new freeways using a structural equations model system of commuters' time use and travel," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 339-354, June.
    6. de Graaff, Thomas & Rietveld, Piet, 2007. "Substitution between working at home and out-of-home: The role of ICT and commuting costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(2), pages 142-160, February.
    7. T Gärling & T Kalén & J Romanus & M Selart & B Vilhelmson, 1998. "Computer Simulation of Household Activity Scheduling," Environment and Planning A, , vol. 30(4), pages 665-679, April.
    8. Wang, Donggen & Borgers, Aloys & Oppewal, Harmen & Timmermans, Harry, 2000. "A stated choice approach to developing multi-faceted models of activity behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(8), pages 625-643, November.
    9. van Wissen, Leo J. & Golob, Thomas F. & Meurs, Henk J., 1991. "A Simultaneous Dynamic Travel And Activites Time Allocation Model," University of California Transportation Center, Working Papers qt0pq5099j, University of California Transportation Center.
    10. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
    11. van Wissen, Leo J. & Golob, Thomas F. & Meurs , Hen J., 1991. "A Simultaneous Dynamic Travel And Activities Time Allocation Model," University of California Transportation Center, Working Papers qt3r77x5h0, University of California Transportation Center.
    12. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    13. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    15. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    16. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    17. Dick Ettema & Olu Ashiru & John Polak & Fabian Bastin, 2005. "Taste Heterogeneity and Substitution Patterns in Models of the Simultaneous Choice of Activity Timing and Duration," ERSA conference papers ersa05p439, European Regional Science Association.
    18. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    19. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    20. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt0zf9w0bs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.