IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v41y2007i10p913-933.html
   My bibliography  Save this article

Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach

Author

Listed:
  • Krygsman, Stephan
  • Arentze, Theo
  • Timmermans, Harry

Abstract

It is generally assumed that the choice of transport mode and the choice of including intermediate activities on a work tour are interrelated, but little is known about the nature of the causal relationship. To shed light on this, this paper addresses the question of whether transport mode choice is dependent on the activity choice or vice-versa. A new methodology, referred to as the co-evolutionary approach, is combined with a set of MNL models, one for each choice facet involved, to derive an indication of the order of decisions on an individual level. The models are estimated based on the work tours of a large sample of individuals in the Netherlands. The results suggest that there is substantial variation in the order of the transport mode and activity decisions. However, in the majority of cases the activity decision is made before the mode decision, suggesting that the transport mode and, in particular, the choice between car and public transport is most often 'adjusted' to the choice of trip chaining rather than the other way round.

Suggested Citation

  • Krygsman, Stephan & Arentze, Theo & Timmermans, Harry, 2007. "Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 913-933, December.
  • Handle: RePEc:eee:transa:v:41:y:2007:i:10:p:913-933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(07)00039-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    2. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
    3. Lee, Ming S. & McNally, Michael G., 2003. "On the Structure of Weekly Activity/Travel Patterns," University of California Transportation Center, Working Papers qt15w464vp, University of California Transportation Center.
    4. Dellaert, B.G.C. & Arentze, T. & Bierlaire, M. & Borgers, A. & Timmermans, H.J.P., 1997. "Investigating consumers' tendency to combine multiple shopping purposes and destinations," Discussion Paper 1997-94, Tilburg University, Center for Economic Research.
    5. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    6. Kondo, Katsunao & Kitamura, Ryuichi, 1987. "Time-space constraints and the formation of trip chains," Regional Science and Urban Economics, Elsevier, vol. 17(1), pages 49-65, February.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, November.
    8. Chieh-Hua Wen & Frank Koppelman, 2000. "A conceptual and methdological framework for the generation of activity-travel patterns," Transportation, Springer, vol. 27(1), pages 5-23, February.
    9. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    10. Nishii, Kazuo & Kondo, Katsunao, 1992. "Trip linkages of urban railway commuters under time-space constraints: Some empirical observations," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 33-44, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changjoo Kim & Olivier Parent & Rainer vom Hofe, 2018. "The role of peer effects and the built environment on individual travel behavior," Environment and Planning B, , vol. 45(3), pages 452-469, May.
    2. Amandine Chevalier & Frédéric Lantz, 2013. "Personal car, public transport and other alternatives? Predicting potential modal shifts from multinomial logit models and bootstrap confidence intervals," Working Papers hal-02474779, HAL.
    3. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    4. Florian Schneider & Danique Ton & Lara-Britt Zomer & Winnie Daamen & Dorine Duives & Sascha Hoogendoorn-Lanser & Serge Hoogendoorn, 2021. "Trip chain complexity: a comparison among latent classes of daily mobility patterns," Transportation, Springer, vol. 48(2), pages 953-975, April.
    5. Tang, Xinyi & Wang, Dianhai & Sun, Yilin & Chen, Mengwei & Waygood, E. Owen D., 2020. "Choice behavior of tourism destination and travel mode: A case study of local residents in Hangzhou, China," Journal of Transport Geography, Elsevier, vol. 89(C).
    6. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    7. Rafiq, Rezwana & McNally, Michael G., 2020. "An empirical analysis and policy implications of work tours utilizing public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 237-259.
    8. Fang, Jia & Yan, Xiang & Bejleri, Ilir & Chen, Changjie, 2022. "Which trip destination matters? Estimating the influence of the built environment on mode choice for home-based complex tours," Journal of Transport Geography, Elsevier, vol. 105(C).
    9. Tanjeeb Ahmed & Michael Hyland, 2023. "Exploring the role of ride-hailing in trip chains," Transportation, Springer, vol. 50(3), pages 959-1002, June.
    10. De Witte, Astrid & Hollevoet, Joachim & Dobruszkes, Frédéric & Hubert, Michel & Macharis, Cathy, 2013. "Linking modal choice to motility: A comprehensive review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 329-341.
    11. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    12. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Watthanaklang, Duangdao & Ratanavaraha, Vatanavongs & Siridhara, Siradol, 2011. "How vehicle ownership affect time utilization on study, leisure, social activities, and academic performance of university students? A case study of engineering freshmen in a rural university in Thail," Transport Policy, Elsevier, vol. 18(5), pages 719-726, September.
    13. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    14. Joachim Scheiner & Christian Holz-Rau, 2017. "Women’s complex daily lives: a gendered look at trip chaining and activity pattern entropy in Germany," Transportation, Springer, vol. 44(1), pages 117-138, January.
    15. François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    16. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    17. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    18. Ofentse Mokwena, 2016. "Paratransit Mesoeconomy: Control Measures From The Supply Side?," Proceedings of Economics and Finance Conferences 3205591, International Institute of Social and Economic Sciences.
    19. Simora, Michael & Vance, Colin, 2017. "Travel mode and tour complexity: The roles of fuel price and built environment," Ruhr Economic Papers 711, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    2. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    3. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    4. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    5. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    6. Allahviranloo, Mahdieh & Aissaoui, Leila, 2019. "A comparison of time-use behavior in metropolitan areas using pattern recognition techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 271-287.
    7. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    8. Rafiq, Rezwana & McNally, Michael G., 2020. "An empirical analysis and policy implications of work tours utilizing public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 237-259.
    9. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    10. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    11. Sutthipong Meeyai, 2015. "Modeling Store Patronage: A Systematic Review," International Conference on Marketing and Business Development Journal, The Bucharest University of Economic Studies, vol. 1(1), pages 40-48, July.
    12. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    13. Dellaert, Benedict G.C. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "Shopping context and consumers’ mental representation of complex shopping trip decision problems," Journal of Retailing, Elsevier, vol. 84(2), pages 219-232.
    14. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    15. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    16. Rezaei, Nazanin & Todd-Blick, Annika & Fujita, K. Sydny & Popovich, Natalie & Needell, Zachary & Poliziani, Cristian & Caicedo, Juan David & Guirado, Carlos & Spurlock, C. Anna, 2024. "At the nexus of equity and transportation modeling: Assessing accessibility through the Individual Experienced Utility-Based Synthesis (INEXUS) metric," Journal of Transport Geography, Elsevier, vol. 115(C).
    17. McDonald, Noreen C., 2005. "Children’s Travel: Patterns and Influences," University of California Transportation Center, Working Papers qt51c9m01c, University of California Transportation Center.
    18. Yoon, Seo Youn & Ravulaparthy, Srinath K. & Goulias, Konstadinos G., 2014. "Dynamic diurnal social taxonomy of urban environments using data from a geocoded time use activity-travel diary and point-based business establishment inventory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 3-17.
    19. Huai, Yue & Lo, Hong K. & Ng, Ka Fai, 2021. "Monocentric versus polycentric urban structure: Case study in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 99-118.
    20. Bills, Tierra S. & Walker, Joan L., 2017. "Looking beyond the mean for equity analysis: Examining distributional impacts of transportation improvements," Transport Policy, Elsevier, vol. 54(C), pages 61-69.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:41:y:2007:i:10:p:913-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.