IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i3d10.1007_s11116-020-10103-1.html
   My bibliography  Save this article

Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes

Author

Listed:
  • Usman Ahmed

    (Technical University of Munich)

  • Ana Tsui Moreno

    (Technical University of Munich)

  • Rolf Moeckel

    (Technical University of Munich)

Abstract

Activity sequencing is a crucial component of disaggregate modeling approaches. This paper presents a methodology to analyse and predict activity sequence patterns for persons based on their socio-demographic attributes. The model is developed using household travel survey data from Germany. The presented method proposes an efficient approach to replace complex activity-scheduling modules in activity-based models. First, the paper describes a multiple correspondence analysis technique to identify the correlation between activity sequence patterns and socio-demographic attributes. Secondly, a probabilistic model is developed, which could predict likely activity sequence patterns for an agent based on the results of the multiple correspondence analysis. The model is predicting activity sequence patterns fairly accurately. For example, the activity sequence pattern home–work–home is well predicted ( $${\mathrm{R}}^{2}$$ R 2 = 0.99) for all the workers, and the activity sequence pattern home–education–home is rather well predicted ( $${\mathrm{R}}^{2}$$ R 2 = 0.90) for students. The model predicts the 112 most common activity sequence patterns reasonably well, which covers 72% of all activity sequence patterns observed.

Suggested Citation

  • Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:3:d:10.1007_s11116-020-10103-1
    DOI: 10.1007/s11116-020-10103-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-020-10103-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-020-10103-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nurul Habib, Khandker & El-Assi, Wafic & Hasnine, Md. Sami & Lamers, James, 2017. "Daily activity-travel scheduling behaviour of non-workers in the National Capital Region (NCR) of Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 1-16.
    2. Chandra Bhat, 2001. "Modeling the Commute Activity-Travel Pattern of Workers: Formulation and Empirical Analysis," Transportation Science, INFORMS, vol. 35(1), pages 61-79, February.
    3. Diana, Marco & Pronello, Cristina, 2010. "Traveler segmentation strategy with nominal variables through correspondence analysis," Transport Policy, Elsevier, vol. 17(3), pages 183-190, May.
    4. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    5. Han, Gain & Sohn, Keemin, 2016. "Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 121-135.
    6. Ryuichi Kitamura & Cynthia Chen & Ram Pendyala & Ravi Narayanan, 2000. "Micro-simulation of daily activity-travel patterns for travel demand forecasting," Transportation, Springer, vol. 27(1), pages 25-51, February.
    7. Siyu Li & Der-Horng Lee, 2017. "Learning daily activity patterns with probabilistic grammars," Transportation, Springer, vol. 44(1), pages 49-68, January.
    8. George Sammour & Tom Bellemans & Koen Vanhoof & Davy Janssens & Bruno Kochan & Geert Wets, 2012. "The usefulness of the Sequence Alignment Methods in validating rule-based activity-based forecasting models," Transportation, Springer, vol. 39(4), pages 773-789, July.
    9. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    10. Rajesh Paleti & Peter Vovsha & Gaurav Vyas & Rebekah Anderson & Gregory Giaimo, 2017. "Activity sequencing, location, and formation of individual non-mandatory tours: application to the activity-based models for Columbus, Cincinnati, and Cleveland, OH," Transportation, Springer, vol. 44(3), pages 615-640, May.
    11. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    12. David Charypar & Kai Nagel, 2005. "Generating complete all-day activity plans with genetic algorithms," Transportation, Springer, vol. 32(4), pages 369-397, July.
    13. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    14. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Loslever, 2024. "Spatiotemporal Analysis of Traffic Data: Correspondence Analysis with Fuzzified Variables vs. Principal Component Analysis Using Weather and Gas Price as Extra Data," Networks and Spatial Economics, Springer, vol. 24(3), pages 531-563, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 0. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 0, pages 1-22.
    2. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    3. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).
    4. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    5. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    7. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    8. Harsh Shah & Andre L. Carrel & Huyen T. K. Le, 2024. "Impacts of teleworking and online shopping on travel: a tour-based analysis," Transportation, Springer, vol. 51(1), pages 99-127, February.
    9. Maya Abou-Zeid & Moshe Ben-Akiva, 2012. "Well-being and activity-based models," Transportation, Springer, vol. 39(6), pages 1189-1207, November.
    10. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    11. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
    12. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    13. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    14. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    15. Badiola, Nicolás & Raveau, Sebastián & Galilea, Patricia, 2019. "Modelling preferences towards activities and their effect on departure time choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 39-51.
    16. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    17. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2023. "Heuristic time-dependent personal scheduling problem with electric vehicles," Transportation, Springer, vol. 50(5), pages 2009-2048, October.
    18. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
    19. Sean Doherty, 2006. "Should we abandon activity type analysis? Redefining activities by their salient attributes," Transportation, Springer, vol. 33(6), pages 517-536, November.
    20. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:3:d:10.1007_s11116-020-10103-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.