IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222033813.html
   My bibliography  Save this article

Developing a carbon emission charging scheme considering mobility as a service

Author

Listed:
  • Zong, Fang
  • Li, Yu-Xuan
  • Zeng, Meng

Abstract

This paper develops a carbon emission charging scheme regarding mobility as a service. An emission coefficient is proposed to express the carbon emissions of vehicles with different displacements. By expressing the travel utility and establishing a mode choice model based on utility maximization theory, we analyze the influence of carbon emission toll rate on traveler's mode choice. Then, a pricing model is established with the goal of maximizing social welfare associated with environmental impacts, travel utility and economic benefits. The Lagrange multiplier method is used to solve the optimal toll rate. The results indicate that compared to the scenario without the charging scheme, the sharing rate of cars powered by nonclean energy decreases from 39.27% to 18.90% and that of shared mobility services and public transport increases by 8.23% and 6.46% respectively. The total carbon emissions decrease by 19.24%. Travelers tend to choose shared cars or car pools rather than public transport. The findings can serve as a theoretical support and decision-making basis for specifying a carbon emission charging scheme and determining the toll rate, which encourages a low carbon-emission mode use to promote the low carbon development of the transportation system.

Suggested Citation

  • Zong, Fang & Li, Yu-Xuan & Zeng, Meng, 2023. "Developing a carbon emission charging scheme considering mobility as a service," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222033813
    DOI: 10.1016/j.energy.2022.126495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. Onwezen, Marleen C. & Antonides, Gerrit & Bartels, Jos, 2013. "The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour," Journal of Economic Psychology, Elsevier, vol. 39(C), pages 141-153.
    3. Cao, Xinyu & Mokhtarian, Patricia L., 2005. "How do individuals adapt their personal travel? Objective and subjective influences on the consideration of travel-related strategies for San Francisco Bay Area commuters," Transport Policy, Elsevier, vol. 12(4), pages 291-302, July.
    4. Chen, Wenbo, 2018. "Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus Cost-sharingAuthor-Name: Yang, Huixiao," Omega, Elsevier, vol. 78(C), pages 179-191.
    5. Longhai Yang & Xiaowei Hu & Lin Fang, 2018. "Carbon emissions tax policy of urban road traffic and its application in Panjin, China," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-14, May.
    6. Andersson, David & Nässén, Jonas, 2016. "The Gothenburg congestion charge scheme: A pre–post analysis of commuting behavior and travel satisfaction," Journal of Transport Geography, Elsevier, vol. 52(C), pages 82-89.
    7. Shi, Junzhe & Xu, Bin & Shen, Yimin & Wu, Jingbo, 2022. "Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition," Energy, Elsevier, vol. 243(C).
    8. Liu, Zhiyuan & Wang, Shuaian & Meng, Qiang, 2014. "Optimal joint distance and time toll for cordon-based congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 81-97.
    9. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    10. Nie, Zhigen & Jia, Yuan & Wang, Wanqiong & Chen, Zheng & Outbib, Rachid, 2022. "Co-optimization of speed planning and energy management for intelligent fuel cell hybrid vehicle considering complex traffic conditions," Energy, Elsevier, vol. 247(C).
    11. Oliveira, Fabio Fava & Sousa, Duarte M. & Kotoviča, Nika, 2022. "Going beyond European emission targets: Pathways for an urban energy transition in the city of Riga," Energy, Elsevier, vol. 246(C).
    12. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    13. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    14. Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Environmental attitudes and emissions charging: An example of policy implications for vehicle choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 171-182.
    15. Poudenx, Pascal, 2008. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 901-909, July.
    16. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    17. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    18. Ho, Chinh Q. & Hensher, David A. & Mulley, Corinne & Wong, Yale Z., 2018. "Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 302-318.
    19. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    20. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    21. Zong, Fang & Yu, Ping & Tang, Jinjun & Sun, Xiao, 2019. "Understanding parking decisions with structural equation modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 408-417.
    22. Shuxia Yang & Yu Ji & Di Zhang & Jing Fu, 2019. "Equilibrium between Road Traffic Congestion and Low-Carbon Economy: A Case Study from Beijing, China," Sustainability, MDPI, vol. 11(1), pages 1-22, January.
    23. Charles Raux & Yves Croissant & Damien Pons, 2015. "Would personal carbon trading reduce travel emissions more effectively than a carbon tax?," Post-Print halshs-01099917, HAL.
    24. Cavallaro, Federico & Giaretta, Federico & Nocera, Silvio, 2018. "The potential of road pricing schemes to reduce carbon emissions," Transport Policy, Elsevier, vol. 67(C), pages 85-92.
    25. May, A. D. & Milne, D. S., 2000. "Effects of alternative road pricing systems on network performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 407-436, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David A. Hensher & Edward Wei & Wen Liu & Loan Ho & Chinh Ho, 2023. "Development of a practical aggregate spatial road freight modal demand model system for truck and commodity movements with an application of a distance-based charging regime," Transportation, Springer, vol. 50(3), pages 1031-1071, June.
    2. Sun, Hui & Zhang, Yiting & Wang, Yuning & Li, Lei & Sheng, Yun, 2015. "A social stakeholder support assessment of low-carbon transport policy based on multi-actor multi-criteria analysis: The case of Tianjin," Transport Policy, Elsevier, vol. 41(C), pages 103-116.
    3. Basu, Rounaq & Ferreira, Joseph, 2021. "Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19," Transport Policy, Elsevier, vol. 103(C), pages 197-210.
    4. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    5. Chen, Zhi & Wu, Wen-Xiang & Huang, Hai-Jun & Shang, Hua-Yan, 2022. "Modeling traffic dynamics in periphery-downtown urban networks combining Vickrey's theory with Macroscopic Fundamental Diagram: user equilibrium, system optimum, and cordon pricing," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 278-303.
    6. Cui, Yin & Li, Zhiyong & Sun, Yu & Sun, Weizheng, 2023. "Environmental performance of an urban passenger transport system and influencing factors: A case study of Tianjin, China," Utilities Policy, Elsevier, vol. 80(C).
    7. Zhang, Linling & Long, Ruyin & Li, Wenbo & Wei, Jia, 2020. "Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. Griffiths, S. & Furszyfer Del Rio, D. & Sovacool, B., 2021. "Policy mixes to achieve sustainable mobility after the COVID-19 crisis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Weining Yang & Zhongying Qi, 2016. "Quantification of CO2 emissions of macro-infrastructure in China with simplified life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 545-569, May.
    10. Wang, Kun & Fu, Xiaowen & Luo, Meifeng, 2015. "Modeling the impacts of alternative emission trading schemes on international shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 35-49.
    11. Binder, Stefan & Macfarlane, Gregory S. & Garrow, Laurie A. & Bierlaire, Michel, 2014. "Associations among household characteristics, vehicle characteristics and emissions failures: An application of targeted marketing data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 122-133.
    12. Chen, Tiantian & Fu, Xiaowen & Hensher, David A. & Li, Zhi-Chun & Sze, N.N., 2022. "The effect of online meeting and health screening on business travel: A stated preference case study in Hong Kong," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Sehyeon Kim & Markus Holz & Soojin Park & Yongbeum Yoon & Eunchel Cho & Junsin Yi, 2021. "Future Options for Lightweight Photovoltaic Modules in Electrical Passenger Cars," Sustainability, MDPI, vol. 13(5), pages 1-7, February.
    14. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    15. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    16. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    17. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.
    18. Hua Pan & Huimin Zhu & Minmin Teng, 2023. "Low-Carbon Transformation Strategy for Blockchain-Based Power Supply Chain," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    19. Hang Lu & APPC 2018–2019 ASK Group & Kenneth Winneg & Kathleen Hall Jamieson & Dolores Albarracín, 2020. "Intentions to Seek Information About the Influenza Vaccine: The Role of Informational Subjective Norms, Anticipated and Experienced Affect, and Information Insufficiency Among Vaccinated and Unvaccina," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 2040-2056, October.
    20. Siyang Zhang & Minjuan Zhao & Qi Ni & Yu Cai, 2021. "Modelling Farmers’ Watershed Ecological Protection Behaviour with the Value-Belief-Norm Theory: A Case Study of the Wei River Basin," IJERPH, MDPI, vol. 18(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222033813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.