IDEAS home Printed from https://ideas.repec.org/r/eee/transa/v101y2017icp163-176.html
   My bibliography  Save this item

Fully automated vehicles: A cost of ownership analysis to inform early adoption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Matthias N. Sweet & Kailey Laidlaw, 2020. "No longer in the driver’s seat: How do affective motivations impact consumer interest in automated vehicles?," Transportation, Springer, vol. 47(5), pages 2601-2634, October.
  2. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
  3. Huang, Yantao & Kockelman, Kara M. & Quarles, Neil, 2020. "How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle," Research in Transportation Economics, Elsevier, vol. 84(C).
  4. Bray, Garrett & Cebon, David, 2022. "Selection of vehicle size and extent of multi-drop deliveries for autonomous goods vehicles: An assessment of potential for change," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  5. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
  6. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
  7. Wu, Jingwen & Liao, Hua & Wang, Jin-Wei, 2020. "Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China," Research in Transportation Economics, Elsevier, vol. 80(C).
  8. Fabio Antonialli & Bruna Habib Cavazza & Rodrigo Gandia & Isabelle Nicolaï & Arthur de Miranda Neto & Joel Sugano & André Luiz Zambalde, 2020. "Human or machine driving? Comparing autonomous with traditional vehicles value curves and motives to use a car," Post-Print halshs-03687616, HAL.
  9. Toheed Ghandriz & Bengt Jacobson & Manjurul Islam & Jonas Hellgren & Leo Laine, 2021. "Transportation-Mission-Based Optimization of Heterogeneous Heavy-Vehicle Fleet Including Electrified Propulsion," Energies, MDPI, vol. 14(11), pages 1-43, May.
  10. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
  11. Saphores, Jean-Daniel & Xu, Lu, 2021. "E-shopping changes and the state of E-grocery shopping in the US - Evidence from national travel and time use surveys," Research in Transportation Economics, Elsevier, vol. 87(C).
  12. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
  13. Simpson, Jesse R. & Mishra, Sabyasachee & Talebian, Ahmadreza & Golias, Mihalis M., 2019. "An estimation of the future adoption rate of autonomous trucks by freight organizations," Research in Transportation Economics, Elsevier, vol. 76(C).
  14. Anna Pernestål & Albin Engholm & Marie Bemler & Gyözö Gidofalvi, 2020. "How Will Digitalization Change Road Freight Transport? Scenarios Tested in Sweden," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
  15. Yoo, Sunbin & Kumagai, Junya & Morita, Tamaki & Park, Y. Gina & Managi, Shunsuke, 2023. "Who to sacrifice? Modeling the driver’s dilemma," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
  16. Aybike Ongel & Erik Loewer & Felix Roemer & Ganesh Sethuraman & Fengqi Chang & Markus Lienkamp, 2019. "Economic Assessment of Autonomous Electric Microtransit Vehicles," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
  17. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
  18. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
  19. Compostella, Junia & Fulton, Lewis M. & De Kleine, Robert & Kim, Hyung Chul & Wallington, Timothy J. & Brown, Austin L., 2021. "Travel time costs in the near- (circa 2020) and long-term (2030–2035) for automated, electrified, and shared mobility in the United States," Transport Policy, Elsevier, vol. 105(C), pages 153-165.
  20. Szimba, Eckhard & Hartmann, Martin, 2020. "Assessing travel time savings and user benefits of automated driving – A case study for a commuting relation," Transport Policy, Elsevier, vol. 98(C), pages 229-237.
  21. Rounaq Basu & Joseph Ferreira, 2020. "A LUTI microsimulation framework to evaluate long-term impacts of automated mobility on the choice of housing-mobility bundles," Environment and Planning B, , vol. 47(8), pages 1397-1417, October.
  22. Alonso Raposo, María & Grosso, Monica & Mourtzouchou, Andromachi & Krause, Jette & Duboz, Amandine & Ciuffo, Biagio, 2022. "Economic implications of a connected and automated mobility in Europe," Research in Transportation Economics, Elsevier, vol. 92(C).
  23. Wang, Song & Li, Zhixia & Wang, Yi & Aaron Wyatt, Daniel, 2022. "How do age and gender influence the acceptance of automated vehicles? – Revealing the hidden mediating effects from the built environment and personal factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 376-394.
  24. Morteza Taiebat & Austin L. Brown & Hannah R. Safford & Shen Qu & Ming Xu, 2019. "A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles," Papers 1901.10581, arXiv.org, revised Feb 2019.
  25. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
  26. Luo, Qi & Saigal, Romesh & Chen, Zhibin & Yin, Yafeng, 2019. "Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 226-243.
  27. Elvik, Rune, 2020. "The demand for automated vehicles: A synthesis of willingness-to-pay surveys," Economics of Transportation, Elsevier, vol. 23(C).
  28. Schweitzer, Nicola & Hofmann, Rupert & Meinheit, Andreas, 2019. "Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 49-65.
  29. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
  30. Asplund, Disa & Pyddoke, Roger, 2021. "Optimal pricing of car use in a small city: A case study of Uppsala," Transport Policy, Elsevier, vol. 114(C), pages 88-103.
  31. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
  32. Tao, Xin & Mårtensson, Jonas & Warnquist, Håkan & Pernestål, Anna, 2022. "Short-term maintenance planning of autonomous trucks for minimizing economic risk," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  33. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.
  34. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
  35. Ron Yang, 2022. "(Don’t) Take Me Home: Home Preference and the Effect of Self-Driving Trucks on Interstate Trade," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
  36. Sun, Shouheng & Wang, Zhenqin & Wang, Weicai, 2023. "The impact of regulatory policy on the growth of ride-hailing platform: System dynamics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
  37. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
  38. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
  39. Compostella, Junia & Fulton, Lewis M. & De Kleine, Robert & Kim, Hyung Chul & Wallington, Timothy J., 2020. "Near- (2020) and long-term (2030–2035) costs of automated, electrified, and shared mobility in the United States," Transport Policy, Elsevier, vol. 85(C), pages 54-66.
  40. Comello, Stephen & Glenk, Gunther & Reichelstein, Stefan, 2020. "Cost-efficient transition to clean energy transportation services," ZEW Discussion Papers 20-054, ZEW - Leibniz Centre for European Economic Research.
  41. Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.
  42. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
  43. Abe, Ryosuke, 2019. "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 94-113.
  44. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
  45. Scott Kaplan & Ben Gordon & Feras El Zarwi & Joan L. Walker & David Zilberman, 2019. "The Future of Autonomous Vehicles: Lessons from the Literature on Technology Adoption," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 583-597, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.