IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p304-d473026.html
   My bibliography  Save this article

How Will Digitalization Change Road Freight Transport? Scenarios Tested in Sweden

Author

Listed:
  • Anna Pernestål

    (Integrated Transport Research Lab, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

  • Albin Engholm

    (Integrated Transport Research Lab, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

  • Marie Bemler

    (Scania CV AB, 151 48 Södertälje, Sweden
    House of Innovation, Stockholm School of Economics, 113 83 Stockholm, Sweden)

  • Gyözö Gidofalvi

    (Integrated Transport Research Lab, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

Abstract

Road freight transport is a key function of modern societies. At the same time, road freight transport accounts for significant emissions. Digitalization, including automation, digitized information, and artificial intelligence, provide opportunities to improve efficiency, reduce costs, and increase service levels in road freight transport. Digitalization may also radically change the business ecosystem in the sector. In this paper, the question, “How will digitalization change the road freight transport landscape?” is addressed by developing four exploratory future scenarios, using Sweden as a case study. The results are based on input from 52 experts. For each of the four scenarios, the impacts on the road freight transport sector are investigated, and opportunities and barriers to achieving a sustainable transportation system in each of the scenarios are discussed. In all scenarios, an increase in vehicle kilometers traveled is predicted, and in three of the four scenarios, significant increases in recycling and urban freight flows are predicted. The scenario development process highlighted how there are important uncertainties in the development of the society that will be highly important for the development of the digitized freight transport landscape. One example is the sustainability paradigm, which was identified as a strategic uncertainty.

Suggested Citation

  • Anna Pernestål & Albin Engholm & Marie Bemler & Gyözö Gidofalvi, 2020. "How Will Digitalization Change Road Freight Transport? Scenarios Tested in Sweden," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:304-:d:473026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yantao Huang & Kara M. Kockelman, 0. "What will autonomous trucking do to U.S. trade flows? Application of the random-utility-based multi-regional input–output model," Transportation, Springer, vol. 0, pages 1-28.
    2. Yantao Huang & Kara M. Kockelman, 2020. "What will autonomous trucking do to U.S. trade flows? Application of the random-utility-based multi-regional input–output model," Transportation, Springer, vol. 47(5), pages 2529-2556, October.
    3. Jan C. T. Bieser & Lorenz M. Hilty, 2018. "Assessing Indirect Environmental Effects of Information and Communication Technology (ICT): A Systematic Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    4. Itf, 2017. "Managing the Transition to Driverless Road Freight Transport," International Transport Forum Policy Papers 32, OECD Publishing.
    5. Wouter Boon & Bert van Wee, 2018. "Influence of 3D printing on transport: a theory and experts judgment based conceptual model," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 556-575, September.
    6. Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    7. Liang Liu & Taesung Hwang & Sungwon Lee & Yanfeng Ouyang & Bumsoo Lee & Steven J. Smith & Christopher W. Tessum & Julian D. Marshall & Fang Yan & Kathryn Daenzer & Tami C. Bond, 2019. "Health and climate impacts of future United States land freight modelled with global-to-urban models," Nature Sustainability, Nature, vol. 2(2), pages 105-112, February.
    8. Johansen, Iver, 2018. "Scenario modelling with morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 116-125.
    9. Harris, Irina & Wang, Yingli & Wang, Haiyang, 2015. "ICT in multimodal transport and technological trends: Unleashing potential for the future," International Journal of Production Economics, Elsevier, vol. 159(C), pages 88-103.
    10. Monios, Jason & Bergqvist, Rickard, 2019. "The transport geography of electric and autonomous vehicles in road freight networks," Journal of Transport Geography, Elsevier, vol. 80(C).
    11. Lane, Bradley W., 2019. "Revisiting ‘An unpopular essay on transportation:’ The outcomes of old myths and the implications of new technologies for the sustainability of transport," Journal of Transport Geography, Elsevier, vol. 81(C).
    12. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    13. S. Sivanandham & M. S. Gajanand, 2020. "Platooning for sustainable freight transportation: an adoptable practice in the near future?," Transport Reviews, Taylor & Francis Journals, vol. 40(5), pages 581-606, July.
    14. Melander, Lisa & Dubois, Anna & Hedvall, Klas & Lind, Frida, 2019. "Future goods transport in Sweden 2050: Using a Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 178-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    2. Bárbara Ferreira & João Reis, 2023. "A Systematic Literature Review on the Application of Automation in Logistics," Logistics, MDPI, vol. 7(4), pages 1-17, November.
    3. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.
    4. Julio Henrique Costa Nobrega & Izabela Simon Rampasso & Vasco Sanchez-Rodrigues & Osvaldo Luiz Gonçalves Quelhas & Walter Leal Filho & Milena Pavan Serafim & Rosley Anholon, 2021. "Logistics 4.0 in Brazil: Critical Analysis and Relationships with SDG 9 Targets," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    5. Tomasz Rokicki & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Logistics Activities in Poland as a Result of the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.
    2. Huang, Yantao & Kockelman, Kara M. & Quarles, Neil, 2020. "How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle," Research in Transportation Economics, Elsevier, vol. 84(C).
    3. Pauget, Bertrand & Tobelem, Jean-Michel & Bootz, Jean-Philippe, 2021. "The future of French museums in 2030," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. Shankar, Ravi & Pathak, Devendra Kumar & Choudhary, Devendra, 2019. "Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 85-100.
    5. Simpson, Jesse R. & Mishra, Sabyasachee & Talebian, Ahmadreza & Golias, Mihalis M., 2019. "An estimation of the future adoption rate of autonomous trucks by freight organizations," Research in Transportation Economics, Elsevier, vol. 76(C).
    6. Seddigh, Mohammad Reza & Targholizadeh, Aida & Shokouhyar, Sajjad & Shokoohyar, Sina, 2023. "Social media and expert analysis cast light on the mechanisms of underlying problems in pharmaceutical supply chain: An exploratory approach," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    7. Shoukohyar, Sajjad & Seddigh, Mohammad Reza, 2020. "Uncovering the dark and bright sides of implementing collaborative forecasting throughout sustainable supply chains: An exploratory approach," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Leminen, Seppo & Rajahonka, Mervi & Wendelin, Robert & Westerlund, Mika & Nyström, Anna-Greta, 2022. "Autonomous vehicle solutions and their digital servitization business models," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    9. Kopyto, Matthias & Lechler, Sabrina & von der Gracht, Heiko A. & Hartmann, Evi, 2020. "Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Monios, Jason & Bergqvist, Rickard, 2020. "Logistics and the networked society: A conceptual framework for smart network business models using electric autonomous vehicles (EAVs)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Sören Wallbach & Katrin Coleman & Ralf Elbert & Alexander Benlian, 2019. "Multi-sided platform diffusion in competitive B2B networks: inhibiting factors and their impact on network effects," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 693-710, December.
    12. Ed Burton & David John Edwards & Chris Roberts & Nicholas Chileshe & Joseph H. K. Lai, 2021. "Delineating the Implications of Dispersing Teams and Teleworking in an Agile UK Construction Sector," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    13. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    14. Fabio Antonialli & Bruna Habib Cavazza & Rodrigo Gandia & Isabelle Nicolaï & Arthur de Miranda Neto & Joel Sugano & André Luiz Zambalde, 2020. "Human or machine driving? Comparing autonomous with traditional vehicles value curves and motives to use a car," Post-Print halshs-03687616, HAL.
    15. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    16. Bouchery, Yann & Hezarkhani, Behzad & Stauffer, Gautier, 2022. "Coalition formation and cost sharing for truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 15-34.
    17. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    18. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    19. Bradley W. Lane, 2022. "The Global Rise of the Modern Plug‐In Electric Vehicle: Public Policy, Innovation and Strategy by John D. Graham, Edward Elgar Publishing, 2021, 489 pp., $157.50 (Elgar online)," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(1), pages 375-380, January.
    20. Ray Qing Cao & Dara G. Schniederjans & Vicky Ching Gu, 2021. "Stakeholder sentiment in service supply chains: big data meets agenda-setting theory," Service Business, Springer;Pan-Pacific Business Association, vol. 15(1), pages 151-175, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:304-:d:473026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.