IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v135y2023icp91-111.html
   My bibliography  Save this article

Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis

Author

Listed:
  • Sarri, Paraskevi
  • Kaparias, Ioannis
  • Preston, John
  • Simmonds, David

Abstract

Advances in automotive engineering have brought about a range of new vehicle technologies, such as automation, connectivity and electrification, which are expected to have multiple effects on different aspects of people's lives and have the potential of radically transforming the transportation status quo. This paper explores the effects that such new technologies can have on land use by employing a Land Use and Transportation Interaction (LUTI) modelling approach. A new methodology is developed to simulate the effects of automation, connectivity and electrification on accessibility and to conduct a sensitivity analysis. The analysis is carried out on a regional scale to determine the effects of the new technologies on multiple cities that form a region. The case study for this application is the region of the West Midlands (UK). The results suggest that new vehicle technologies can affect accessibility, population and employment in the cities of the region, the region itself, as well as the peripheral zones beyond the boundary of the region in a 15-year modelling period. Most notably, the two main urban cores of the region are found to not lose their financial power, despite increases in employment opportunities and population density in more rural outskirts. The increased accessibility also results in the relocation of lower-income households to places with lower housing rent. The sensitivity analysis shows that these findings are mostly impacted by changes in road capacity (which is expected to be generally higher as a result of these new technologies), as well as different penetration levels in the fleet.

Suggested Citation

  • Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.
  • Handle: RePEc:eee:trapol:v:135:y:2023:i:c:p:91-111
    DOI: 10.1016/j.tranpol.2023.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23000719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    2. May, Anthony D. & Shepherd, Simon & Pfaffenbichler, Paul & Emberger, Günter, 2020. "The potential impacts of automated cars on urban transport: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 127-138.
    3. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    4. Long T. Truong & Chris Gruyter & Graham Currie & Alexa Delbosc, 2017. "Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia," Transportation, Springer, vol. 44(6), pages 1279-1292, November.
    5. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    6. Hymel, Kent, 2009. "Does traffic congestion reduce employment growth?," Journal of Urban Economics, Elsevier, vol. 65(2), pages 127-135, March.
    7. Tom Cohen & Clémence Cavoli, 2019. "Automated vehicles: exploring possible consequences of government (non)intervention for congestion and accessibility," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 129-151, January.
    8. Steven Brand & Stephen Hill & Max Munday, 2000. "Assessing the Impacts of Foreign Manufacturing on Regional Economies: The Cases of Wales, Scotland and the West Midlands," Regional Studies, Taylor & Francis Journals, vol. 34(4), pages 343-355.
    9. Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
    10. Karl Storchmann, 2004. "On the Depreciation of Automobiles: An International Comparison," Transportation, Springer, vol. 31(4), pages 371-408, November.
    11. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    12. Small Kenneth A. & Song Shunfeng, 1994. "Population and Employment Densities: Structure and Change," Journal of Urban Economics, Elsevier, vol. 36(3), pages 292-313, November.
    13. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    14. Rubén Cordera & Soledad Nogués & Esther González-González & José Luis Moura, 2021. "Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    15. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    16. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    17. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    19. Jin, Jangik & Rafferty, Peter, 2017. "Does congestion negatively affect income growth and employment growth? Empirical evidence from US metropolitan regions," Transport Policy, Elsevier, vol. 55(C), pages 1-8.
    20. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    2. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    3. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    5. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    6. Rubén Cordera & Soledad Nogués & Esther González-González & José Luis Moura, 2021. "Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    7. Mao, Wei & Shepherd, Simon & Harrison, Gillian & Xu, Meng, 2024. "Autonomous vehicle market development in Beijing: A system dynamics approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    8. Dilshad Mohammed & Balázs Horváth, 2023. "Travel Demand Increment Due to the Use of Autonomous Vehicles," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    9. Mohamad Shatanawi & Mohammed Hajouj & Belal Edries & Ferenc Mészáros, 2022. "The Interrelationship between Road Pricing Acceptability and Self-Driving Vehicle Adoption: Insights from Four Countries," Sustainability, MDPI, vol. 14(19), pages 1-32, October.
    10. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    11. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Simpson, Jesse R. & Mishra, Sabyasachee & Talebian, Ahmadreza & Golias, Mihalis M., 2019. "An estimation of the future adoption rate of autonomous trucks by freight organizations," Research in Transportation Economics, Elsevier, vol. 76(C).
    13. Shatanawi, Mohamad & Alatawneh, Anas & Mészáros, Ferenc, 2022. "Implications of static and dynamic road pricing strategies in the era of autonomous and shared autonomous vehicles using simulation-based dynamic traffic assignment: The case of Budapest," Research in Transportation Economics, Elsevier, vol. 95(C).
    14. Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
    15. Huang, Yantao & Kockelman, Kara M. & Quarles, Neil, 2020. "How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle," Research in Transportation Economics, Elsevier, vol. 84(C).
    16. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    17. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    18. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    19. Nikitas, Alexandros & Parkinson, Simon & Vallati, Mauro, 2022. "The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies," Transport Policy, Elsevier, vol. 122(C), pages 1-10.
    20. L. Samková, 2023. "Management of integrated passenger transport system and its role in tourism development," Economics Working Papers 2023-03, University of South Bohemia in Ceske Budejovice, Faculty of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:135:y:2023:i:c:p:91-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.