IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v85y2020icp54-66.html
   My bibliography  Save this article

Near- (2020) and long-term (2030–2035) costs of automated, electrified, and shared mobility in the United States

Author

Listed:
  • Compostella, Junia
  • Fulton, Lewis M.
  • De Kleine, Robert
  • Kim, Hyung Chul
  • Wallington, Timothy J.

Abstract

Revolutions in shared mobility services, vehicle electrification, and automated vehicle technology will affect urban traffic patterns, energy use and CO2 emissions, the automotive industry, public transportation, and more. This paper examines the monetary costs of these innovations for users in the near-term (approximately 2020) and how they may evolve in the long-term (approximately 2030–2035). We estimate traveler costs for light duty vehicle trips on a per-mile basis, and investigate their sensitivity to vehicle powertrain, vehicle size, travel mode and intensity of vehicle use, and DC charging assumptions. To highlight differences between human and automated driving, we consider only autonomous vehicle scenarios in the long-term. We document three main findings. First, as battery costs continue to drop over the next decade, private battery electric vehicles will become more cost-competitive with internal combustion vehicles; and in high-mileage ridesourcing applications, electric vehicles will be much more cost-competitive. Second, near-term ridesourcing trips will likely remain about 4–5 times the per-mile cost of driving one's own car, while pooled trips cut this factor to around 3. Third, in the long-term automated vehicles may make ridesourcing cheaper than driving one's own vehicle. Even if the manufacturing cost of automated vehicles remains high, this cost will be minor when amortized over a service life of 400,000 miles. These findings are unchanged even with significant variations in assumed future battery and automation costs, electricity (charging) cost, vehicle insurance and maintenance cost, and ridesourcing providers' overhead rates.

Suggested Citation

  • Compostella, Junia & Fulton, Lewis M. & De Kleine, Robert & Kim, Hyung Chul & Wallington, Timothy J., 2020. "Near- (2020) and long-term (2030–2035) costs of automated, electrified, and shared mobility in the United States," Transport Policy, Elsevier, vol. 85(C), pages 54-66.
  • Handle: RePEc:eee:trapol:v:85:y:2020:i:c:p:54-66
    DOI: 10.1016/j.tranpol.2019.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X18309119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2019.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    2. Wadud, Zia, 2017. "Fully automated vehicles: A cost of ownership analysis to inform early adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 163-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sigma Dolins & Yale Z. Wong & John D. Nelson, 2021. "The ‘Sharing Trap’: A Case Study of Societal and Stakeholder Readiness for On-Demand and Autonomous Public Transport in New South Wales, Australia," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    2. Compostella, Junia & Fulton, Lewis M. & De Kleine, Robert & Kim, Hyung Chul & Wallington, Timothy J. & Brown, Austin L., 2021. "Travel time costs in the near- (circa 2020) and long-term (2030–2035) for automated, electrified, and shared mobility in the United States," Transport Policy, Elsevier, vol. 105(C), pages 153-165.
    3. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    4. Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
    5. Hirte, Georg & Laes, Renée, 2022. "Working from self-driving cars," CEPIE Working Papers 01/22, Technische Universität Dresden, Center of Public and International Economics (CEPIE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    2. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    3. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    4. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    5. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    6. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    7. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    8. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    9. Aybike Ongel & Erik Loewer & Felix Roemer & Ganesh Sethuraman & Fengqi Chang & Markus Lienkamp, 2019. "Economic Assessment of Autonomous Electric Microtransit Vehicles," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    10. Elvik, Rune, 2020. "The demand for automated vehicles: A synthesis of willingness-to-pay surveys," Economics of Transportation, Elsevier, vol. 23(C).
    11. Taiebat, Morteza & Stolper, Samuel & Xu, Ming, 2019. "Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound," Applied Energy, Elsevier, vol. 247(C), pages 297-308.
    12. Sun, Shouheng & Wang, Zhenqin & Wang, Weicai, 2023. "The impact of regulatory policy on the growth of ride-hailing platform: System dynamics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    13. Rounaq Basu & Joseph Ferreira, 2020. "A LUTI microsimulation framework to evaluate long-term impacts of automated mobility on the choice of housing-mobility bundles," Environment and Planning B, , vol. 47(8), pages 1397-1417, October.
    14. Alonso Raposo, María & Grosso, Monica & Mourtzouchou, Andromachi & Krause, Jette & Duboz, Amandine & Ciuffo, Biagio, 2022. "Economic implications of a connected and automated mobility in Europe," Research in Transportation Economics, Elsevier, vol. 92(C).
    15. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    16. Abe, Ryosuke, 2019. "Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 94-113.
    17. Marco R. Barassi & Gianluigi De Pascale & Raffaele Lagravinese, 2021. "Testing the law of one-price in the US gasoline market: a long memory approach," SERIES 03-2021, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Jun 2021.
    18. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    19. Fabio Antonialli & Bruna Habib Cavazza & Rodrigo Gandia & Isabelle Nicolaï & Arthur de Miranda Neto & Joel Sugano & André Luiz Zambalde, 2020. "Human or machine driving? Comparing autonomous with traditional vehicles value curves and motives to use a car," Post-Print halshs-03687616, HAL.
    20. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:85:y:2020:i:c:p:54-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.