My bibliography
Save this item
A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wen, Jin & Chang, Qingchao & Zhu, Jishi & Cui, Rui & He, Cheng & Yan, Xinxing & Li, Xiaoke, 2023. "The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors," Renewable Energy, Elsevier, vol. 206(C), pages 676-685.
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Ozsoy, Ahmet & Corumlu, Vahit, 2018. "Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications," Renewable Energy, Elsevier, vol. 122(C), pages 26-34.
- Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
- Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
- Chen, Yanjun & Zhang, Yalei & Lan, Huiyong & Li, Changzheng & Liu, Xiuliang & He, Deqiang, 2023. "Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector," Renewable Energy, Elsevier, vol. 215(C).
- Wang, Tianmi & Si, Qiaoling & Hu, Yang & Tang, Guihua & Chua, Kian Jon, 2023. "Silica aerogel composited with both plasmonic nanoparticles and opacifiers for high-efficiency photo-thermal harvest," Energy, Elsevier, vol. 265(C).
- Sani, Elisa & Papi, Nicolò & Mercatelli, Luca & Żyła, Gaweł, 2018. "Graphite/diamond ethylene glycol-nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 126(C), pages 692-698.
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Khosravi, Ali & Malekan, Mohammad & Assad, Mamdouh E.H., 2019. "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 54-63.
- Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
- Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
- Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
- Amber, I. & O'Donovan, T.S., 2018. "Natural convection induced by the absorption of solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3526-3545.
- Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2022. "Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.
- Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
- Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
- Xing, Linzhuang & Wang, Ruipeng & Ha, Yuan & Li, Zhimin, 2023. "Absorption characteristics and solar thermal conversion of Fe3O4@Au core/shell nanoparticles for a direct-absorption solar collector," Renewable Energy, Elsevier, vol. 216(C).
- Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
- Pei, Maoqing & Liu, Huawei & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Investigation and optimization of the performance of a spectrum splitting photovoltaic/thermal system using multiple kinds of core-shell nanofluids," Energy, Elsevier, vol. 288(C).
- Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
- Al-Gebory, Layth & Mengüç, M. Pinar & Koşar, Ali & Şendur, Kürşat, 2018. "Effect of electrostatic stabilization on thermal radiation transfer in nanosuspensions: Photo-thermal energy conversion applications," Renewable Energy, Elsevier, vol. 119(C), pages 625-640.
- Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).
- Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
- Diniz, Filipe L.J. & Vital, Caio V.P. & Gómez-Malagón, Luis A., 2022. "Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids," Renewable Energy, Elsevier, vol. 186(C), pages 51-65.
- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
- Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
- Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.