IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p80-d468379.html
   My bibliography  Save this article

The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review

Author

Listed:
  • Yunus Tansu Aksoy

    (Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME), KU Leuven, B-3001 Leuven, Belgium)

  • Yanshen Zhu

    (Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, B-3001 Leuven, Belgium)

  • Pinar Eneren

    (Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME), KU Leuven, B-3001 Leuven, Belgium)

  • Erin Koos

    (Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, B-3001 Leuven, Belgium)

  • Maria Rosaria Vetrano

    (Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME), KU Leuven, B-3001 Leuven, Belgium)

Abstract

Cooling by impinging droplets has been the subject of several studies for decades and still is, and, in the last few years, the potential heat transfer enhancement obtained thanks to nanofluids’ use has received increased interest. Indeed, the use of high thermal conductivity fluids, such as nanofluids’, is considered today as a possible way to strongly enhance this heat transfer process. This enhancement is related to several physical mechanisms. It is linked to the nanofluids’ rheology, their degree of stabilization, and how the presence of the nanoparticles impact the droplet/substrate dynamics. Although there are several articles on droplet impact dynamics and nanofluid heat transfer enhancement, there is a lack of review studies that couple these two topics. As such, this review aims to provide an analysis of the available literature dedicated to the dynamics between a single nanofluid droplet and a hot substrate, and the consequent enhancement or reduction of heat transfer. Finally, we also conduct a review of the available publications on nanofluids spray cooling. Although using nanofluids in spray cooling may seem a promising option, the few works present in the literature are not yet conclusive, and the mechanism of enhancement needs to be clarified.

Suggested Citation

  • Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:80-:d:468379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/80/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/80/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.
    2. Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
    3. Robert D. Deegan & Olgica Bakajin & Todd F. Dupont & Greb Huber & Sidney R. Nagel & Thomas A. Witten, 1997. "Capillary flow as the cause of ring stains from dried liquid drops," Nature, Nature, vol. 389(6653), pages 827-829, October.
    4. Estellé, Patrice & Cabaleiro, David & Żyła, Gawel & Lugo, Luis & Murshed, S.M. Sohel, 2018. "Current trends in surface tension and wetting behavior of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 931-944.
    5. Darsh T. Wasan & Alex D. Nikolov, 2003. "Spreading of nanofluids on solids," Nature, Nature, vol. 423(6936), pages 156-159, May.
    6. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Yin & Shangming Wang & Xuehao Sang & Zhifu Zhou & Bin Chen & Panidis Thrassos & Alexandros Romeos & Athanasios Giannadakis, 2022. "Spray Cooling as a High-Efficient Thermal Management Solution: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    2. Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu, 2022. "Recent Developments of Heat Transfer Enhancement and Thermal Management Technology," Energies, MDPI, vol. 15(16), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    3. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    4. Sergey Misyura & Andrey Semenov & Yulia Peschenyuk & Ivan Vozhakov & Vladimir Morozov, 2023. "Nonisothermal Evaporation of Sessile Drops of Aqueous Solutions with Surfactant," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Xiao Wang & Senbo Xiao & Zhiliang Zhang & Jianying He, 2017. "Effect of Nanoparticles on Spontaneous Imbibition of Water into Ultraconfined Reservoir Capillary by Molecular Dynamics Simulation," Energies, MDPI, vol. 10(4), pages 1-14, April.
    6. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    8. Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
    9. Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
    10. Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).
    11. Wen, Jin & Chang, Qingchao & Zhu, Jishi & Cui, Rui & He, Cheng & Yan, Xinxing & Li, Xiaoke, 2023. "The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors," Renewable Energy, Elsevier, vol. 206(C), pages 676-685.
    12. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    13. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    14. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    15. Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
    16. Sujat Sen & Elahe Moazzen & Sinjin Acuna & Evan Draxler & Carlo U. Segre & Elena V. Timofeeva, 2022. "Nickel Hydroxide Nanofluid Cathodes with High Solid Loadings and Low Viscosity for Energy Storage Applications," Energies, MDPI, vol. 15(13), pages 1-13, June.
    17. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    18. Chen, Yanjun & Zhang, Yalei & Lan, Huiyong & Li, Changzheng & Liu, Xiuliang & He, Deqiang, 2023. "Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector," Renewable Energy, Elsevier, vol. 215(C).
    19. Fanny Thorimbert & Mateusz Odziomek & Denis Chateau & Stéphane Parola & Marco Faustini, 2024. "Programming crack patterns with light in colloidal plasmonic films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Khosravi, Ali & Malekan, Mohammad & Assad, Mamdouh E.H., 2019. "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 54-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:80-:d:468379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.