IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v186y2022icp51-65.html
   My bibliography  Save this article

Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids

Author

Listed:
  • Diniz, Filipe L.J.
  • Vital, Caio V.P.
  • Gómez-Malagón, Luis A.

Abstract

For a Si-Photovoltaic (PV) system, the incident solar radiation is not completely used for electricity generation because a fraction of the incident energy is transmitted, and the other is thermalized increasing the temperature of the solar cell. An alternative to minimize this problem is to use direct absorption solar collectors containing plasmonic nanofluids on the top of the PV solar cell to filter the solar radiation. This Photovoltaic/Thermal (PV/T) system has a global energetic efficiency that depends on the optical and physical properties of the nanofluid. Then, a parametric analysis of the energetic and exergetic efficiencies of a PV/T system containing silver and gold nanoparticles was developed, and the parameters set that optimizes the performance of a PV/T system were determined. For example, considering that the global energetic efficiency of a PV system is 21%, for the optimized design of the proposed PV/T system, it increases to a maximum value of 52.45% (16.05% for PV and 36.40% for the thermal system) using aqueous nanofluids containing gold nanoparticles of 10 nm diameter and 9 × 10−6 volumetric fraction and 0.0060 kg/s mass flow rate. It shows that metallic nanofluids can improve the PV/T system performance.

Suggested Citation

  • Diniz, Filipe L.J. & Vital, Caio V.P. & Gómez-Malagón, Luis A., 2022. "Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids," Renewable Energy, Elsevier, vol. 186(C), pages 51-65.
  • Handle: RePEc:eee:renene:v:186:y:2022:i:c:p:51-65
    DOI: 10.1016/j.renene.2021.12.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121018796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
    2. Day, Joseph & Senthilarasu, S. & Mallick, Tapas K., 2019. "Improving spectral modification for applications in solar cells: A review," Renewable Energy, Elsevier, vol. 132(C), pages 186-205.
    3. Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
    4. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
    5. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    6. Yazdanifard, Farideh & Ameri, Mehran & Ebrahimnia-Bajestan, Ehsan, 2017. "Performance of nanofluid-based photovoltaic/thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 323-352.
    7. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    8. Sahin, Ahmet Z. & Uddin, Mohammed Ayaz & Yilbas, Bekir S. & Al-Sharafi, Abdullah, 2020. "Performance enhancement of solar energy systems using nanofluids: An updated review," Renewable Energy, Elsevier, vol. 145(C), pages 1126-1148.
    9. Crisostomo, Felipe & Taylor, Robert A. & Surjadi, Desiree & Mojiri, Ahmad & Rosengarten, Gary & Hawkes, Evatt R., 2015. "Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector," Applied Energy, Elsevier, vol. 141(C), pages 238-246.
    10. Hassani, Samir & Taylor, Robert A. & Mekhilef, Saad & Saidur, R., 2016. "A cascade nanofluid-based PV/T system with optimized optical and thermal properties," Energy, Elsevier, vol. 112(C), pages 963-975.
    11. Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadpour, Javad & Salehi, Fatemeh & Sheikholeslami, Mohsen & Lee, Ann, 2022. "A computational study on nanofluid impingement jets in thermal management of photovoltaic panel," Renewable Energy, Elsevier, vol. 189(C), pages 970-982.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    3. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
    4. Li, Boyu & Hong, Wenpeng & Li, Haoran & Lan, Jingrui & Zi, Junliang, 2022. "Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis," Energy, Elsevier, vol. 242(C).
    5. Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).
    6. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    7. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zhao, Shuang & Li, Wenzhi & Abd El-Samie, Mostafa M. & Ju, Xing & Xu, Chao, 2022. "Numerical simulation to study the effect of spectral division of solar irradiance on the spectral splitting photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 182(C), pages 634-646.
    9. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    10. Tang, Sanli & Hong, Hui & Jin, Hongguang & Xuan, Yimin, 2019. "A cascading solar hybrid system for co-producing electricity and solar syngas with nanofluid spectrum selector," Applied Energy, Elsevier, vol. 248(C), pages 231-240.
    11. Han, Xinyue & Ding, Fan & Huang, Ju & Zhao, Xiaobo, 2023. "Hybrid nanofluid filtered concentrating photovoltaic/thermal-direct contact membrane distillation system for co-production of electricity and freshwater," Energy, Elsevier, vol. 263(PD).
    12. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    13. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Meng, Chunfeng, 2021. "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems," Energy, Elsevier, vol. 215(PA).
    15. Hashemian, Mehran & Jafarmadar, Samad & Khalilarya, Shahram & Faraji, Masoud, 2022. "Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter," Renewable Energy, Elsevier, vol. 198(C), pages 426-439.
    16. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    17. Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
    18. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    19. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    20. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:186:y:2022:i:c:p:51-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.