IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014320.html
   My bibliography  Save this article

Feasibility of realizing photothermal, photovoltaic, and radiative cooling with a flexible structure

Author

Listed:
  • Huang, Maoquan
  • Ren, Xingjie
  • Tang, G.H.
  • Sun, Qie
  • Du, Mu

Abstract

The escalating energy demands and the imperative of environmental conservation necessitate advanced sustainable energy solutions. This study introduces a novel nanofluid spectrum-splitting photovoltaic/thermal system integrated with radiative cooling (RC) technology, termed NSS-RC-PV/T. This system optimizes solar spectrum utilization, enhances thermal management, and significantly improves the efficiency and flexibility of heat, electricity, and cooling outputs. Employing a reversible PV-Ag panel, the system adapts between PV/T and RC modes based on energy demands. A comprehensive mathematical model is established to evaluate its performance under realistic environmental conditions across China. Results indicate the maximum energy output of the system is 6438 MJ/m2, which is a 33.4% increase in annual energy output compared to the conventional PV/T system. The dynamic power response model also shows an increase of 5.8% (266 MJ/m2) compared to the daylight response model. This research underscores the potential of NSS-RC-PV/T systems in advancing renewable energy technologies and meeting modern energy needs.

Suggested Citation

  • Huang, Maoquan & Ren, Xingjie & Tang, G.H. & Sun, Qie & Du, Mu, 2024. "Feasibility of realizing photothermal, photovoltaic, and radiative cooling with a flexible structure," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014320
    DOI: 10.1016/j.renene.2024.121364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    2. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    3. Özşimşek, Atılgan Onurcan & Omar, Muhammed Arslan, 2024. "A numerical study on the effect of employing porous medium on thermal performance of a PV/T system," Renewable Energy, Elsevier, vol. 226(C).
    4. M. M. Sarafraz & Mohammad Reza Safaei & Arturo S. Leon & Iskander Tlili & Tawfeeq Abdullah Alkanhal & Zhe Tian & Marjan Goodarzi & M. Arjomandi, 2019. "Experimental Investigation on Thermal Performance of a PV/T-PCM (Photovoltaic/Thermal) System Cooling with a PCM and Nanofluid," Energies, MDPI, vol. 12(13), pages 1-16, July.
    5. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    6. Emam, Mohamed & Hamada, Alaa & Refaey, H.A. & Moawed, M. & Abdelrahman, M.A. & Rashed, Mostafa R., 2024. "Year-round experimental analysis of a water-based PVT-PCM hybrid system: Comprehensive 4E assessments," Renewable Energy, Elsevier, vol. 226(C).
    7. Zaite, Abdelkabir & Belouaggadia, Naoual & Abid, Cherifa & Kaiss, Ahmed & Imghoure, Oumaima, 2024. "Performance enhancement of a photovoltaic-thermal thermoelectric collector using night radiative cooling," Applied Energy, Elsevier, vol. 364(C).
    8. Menon, Govind S. & Murali, S. & Elias, Jacob & Aniesrani Delfiya, D.S. & Alfiya, P.V. & Samuel, Manoj P., 2022. "Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium," Renewable Energy, Elsevier, vol. 188(C), pages 986-996.
    9. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    10. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
    11. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    12. Liu, Wenjie & Yao, Jian & Jia, Teng & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2023. "The performance optimization of DX-PVT heat pump system for residential heating," Renewable Energy, Elsevier, vol. 206(C), pages 1106-1119.
    13. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    15. Fu, Zaiguo & Xue, Mingxing & Shao, Zhixiong & Zhu, Qunzhi, 2024. "Performance evaluation of a novel vacuum-tube PV/T system with inserted PV module and heat pipe," Renewable Energy, Elsevier, vol. 223(C).
    16. Al-Shamani, Ali Najah & Alghoul, M.A. & Elbreki, A.M. & Ammar, A.A. & Abed, Azher M. & Sopian, K., 2018. "Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nano-fluids," Energy, Elsevier, vol. 145(C), pages 770-792.
    17. Zhao, Xiaobo & Han, Xinyue & Yao, Yiping & Huang, Ju, 2022. "Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems," Energy, Elsevier, vol. 238(PC).
    18. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    19. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    20. Zhao, Bin & Lu, Kegui & Hu, Mingke & Liu, Jie & Wu, Lijun & Xu, Chengfeng & Xuan, Qingdong & Pei, Gang, 2022. "Radiative cooling of solar cells with micro-grating photonic cooler," Renewable Energy, Elsevier, vol. 191(C), pages 662-668.
    21. Hu, Mingke & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2020. "An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module," Applied Energy, Elsevier, vol. 277(C).
    22. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    23. Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).
    24. Hassani, Samir & Taylor, Robert A. & Mekhilef, Saad & Saidur, R., 2016. "A cascade nanofluid-based PV/T system with optimized optical and thermal properties," Energy, Elsevier, vol. 112(C), pages 963-975.
    25. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    26. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    2. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    3. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).
    5. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    7. Pei, Maoqing & Liu, Huawei & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Investigation and optimization of the performance of a spectrum splitting photovoltaic/thermal system using multiple kinds of core-shell nanofluids," Energy, Elsevier, vol. 288(C).
    8. Hu, Mingke & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2020. "An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module," Applied Energy, Elsevier, vol. 277(C).
    9. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    10. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    11. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.
    12. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    13. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    14. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    15. Xu, Nuo & Wang, Jiacheng & Cui, Yubo & Ren, Shenghao & Deng, Jiangbin & Gou, Qianzhi & Chen, Zhaoyu & Wang, Kaixin & Geng, Yang & Cui, Jiaxi & Li, Meng, 2024. "Butterfly wing-inspired microstructured film with high reflectivity for efficient passive radiative cooling," Renewable Energy, Elsevier, vol. 229(C).
    16. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    17. Aktaş, Ahmet & Koşan, Meltem & Aktekeli, Burak & Güven, Yaren & Arslan, Erhan & Aktaş, Mustafa, 2024. "Numerical and experimental investigation of a single-body PVT using a variable air volume control algorithm," Energy, Elsevier, vol. 307(C).
    18. Hu, Mingke & Zhao, Bin & Suhendri, S. & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Yang, Ronggui & Su, Yuehong & Pei, Gang, 2022. "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate," Applied Energy, Elsevier, vol. 306(PB).
    19. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    20. Karkaba, H. & Etienne, L. & Pelay, U. & Russeil, S. & Simo tala, J. & Boonaert, J. & Lecoeuche, S. & Bougeard, D., 2023. "Performance improvement of air cooled photo-voltaic thermal panel using economic model predictive control and vortex generators," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.