Absorption characteristics and solar thermal conversion of Fe3O4@Au core/shell nanoparticles for a direct-absorption solar collector
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.119120
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
- Liu, Huan & Tian, Xinxin & Ouyang, Mize & Wang, Xiang & Wu, Dezhen & Wang, Xiaodong, 2021. "Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy," Renewable Energy, Elsevier, vol. 179(C), pages 47-64.
- Qin, Caiyan & Kim, Joong Bae & Gonome, Hiroki & Lee, Bong Jae, 2020. "Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector," Renewable Energy, Elsevier, vol. 145(C), pages 21-28.
- Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
- Sun, Chunlei & Zou, Yuan & Qin, Caiyan & Chen, Meijie & Li, Xiaoke & Zhang, Bin & Wu, Xiaohu, 2022. "Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector," Renewable Energy, Elsevier, vol. 189(C), pages 402-411.
- Leong, K.Y. & Ong, Hwai Chyuan & Amer, N.H. & Norazrina, M.J. & Risby, M.S. & Ku Ahmad, K.Z., 2016. "An overview on current application of nanofluids in solar thermal collector and its challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1092-1105.
- Jin, Xin & Lin, Guiping & Zeiny, Aimen & Jin, Haichuan & Bai, Lizhan & Wen, Dongsheng, 2019. "Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study," Renewable Energy, Elsevier, vol. 141(C), pages 937-949.
- de Risi, A. & Milanese, M. & Laforgia, D., 2013. "Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids," Renewable Energy, Elsevier, vol. 58(C), pages 134-139.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
- Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
- Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
- Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Wang, Tianmi & Si, Qiaoling & Hu, Yang & Tang, Guihua & Chua, Kian Jon, 2023. "Silica aerogel composited with both plasmonic nanoparticles and opacifiers for high-efficiency photo-thermal harvest," Energy, Elsevier, vol. 265(C).
- Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
- Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
- Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
- Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
- Ju, Xinyu & Liu, Huawei & Pei, Maoqing & Li, Wenzhi & Lin, Jianqing & Liu, Dongxue & Ju, Xing & Xu, Chao, 2023. "Multi-parameter study and genetic algorithm integrated optimization for a nanofluid-based photovoltaic/thermal system," Energy, Elsevier, vol. 267(C).
- Shi, Yaolu & Sun, Jie & Wei, Jinjia, 2024. "Proposal of a parabolic-trough-oriented photo-thermo-reactor with coaxial baffles and dual-bed for high-efficient solar-driven hydrogen production from methanol steam reforming," Renewable Energy, Elsevier, vol. 228(C).
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
More about this item
Keywords
Fe3O4@Au core/shell nanoparticles; Photothermal conversion performance; Solar energy harvesting; Direct-absorption solar collector;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123010340. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.