IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v68y2017ip1p447-460.html
   My bibliography  Save this item

Modelling electric vehicles use: a survey on the methods

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rishabh Ghotge & Yitzhak Snow & Samira Farahani & Zofia Lukszo & Ad van Wijk, 2020. "Optimized Scheduling of EV Charging in Solar Parking Lots for Local Peak Reduction under EV Demand Uncertainty," Energies, MDPI, vol. 13(5), pages 1-18, March.
  2. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
  3. Florian Straub & Simon Streppel & Dietmar Göhlich, 2021. "Methodology for Estimating the Spatial and Temporal Power Demand of Private Electric Vehicles for an Entire Urban Region Using Open Data," Energies, MDPI, vol. 14(8), pages 1-21, April.
  4. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2019. "Operational Aspects of Electric Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 12(24), pages 1-18, December.
  5. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
  6. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
  7. Zafar, Muhammad Hamza & Mansoor, Majad & Abou Houran, Mohamad & Khan, Noman Mujeeb & Khan, Kamran & Raza Moosavi, Syed Kumayl & Sanfilippo, Filippo, 2023. "Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles," Energy, Elsevier, vol. 282(C).
  8. Rodrigues, João L. & Bolognesi, Hugo M. & Melo, Joel D. & Heymann, Fabian & Soares, F.J., 2019. "Spatiotemporal model for estimating electric vehicles adopters," Energy, Elsevier, vol. 183(C), pages 788-802.
  9. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  10. Wangsness, Paal Brevik & Proost, Stef & Rødseth, Kenneth Løvold, 2021. "Optimal policies for electromobility: Joint assessment of transport and electricity distribution costs in Norway," Utilities Policy, Elsevier, vol. 72(C).
  11. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
  12. Jansen, Malte & Gross, Rob & Staffell, Iain, 2024. "Quantitative evidence for modelling electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  13. Xu, Xiaodan & Aziz, H.M. Abdul & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2020. "A scalable energy modeling framework for electric vehicles in regional transportation networks," Applied Energy, Elsevier, vol. 269(C).
  14. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
  15. Mokhele Edmond Moeletsi, 2021. "Future Policy and Technological Advancement Recommendations for Enhanced Adoption of Electric Vehicles in South Africa: A Survey and Review," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
  16. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
  17. Dominik Husarek & Vjekoslav Salapic & Simon Paulus & Michael Metzger & Stefan Niessen, 2021. "Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration," Energies, MDPI, vol. 14(23), pages 1-27, November.
  18. Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).
  19. Huang, Youlin & Qian, Lixian & Soopramanien, Didier & Tyfield, David, 2021. "Buy, lease, or share? Consumer preferences for innovative business models in the market for electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
  20. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
  21. Solvi Hoen, Fredrik & Díez-Gutiérrez, María & Babri, Sahar & Hess, Stephane & Tørset, Trude, 2023. "Charging electric vehicles on long trips and the willingness to pay to reduce waiting for charging. Stated preference survey in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
  22. Krishnan, V. Vijai & Sreekumar, M., 2023. "An integrated behavioral approach to analyze the adoption of electric vehicles in the context of a developing country," Transport Policy, Elsevier, vol. 142(C), pages 162-172.
  23. Narongkorn Uthathip & Pornrapeepat Bhasaputra & Woraratana Pattaraprakorn, 2021. "Stochastic Modelling to Analyze the Impact of Electric Vehicle Penetration in Thailand," Energies, MDPI, vol. 14(16), pages 1-23, August.
  24. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "A Comparative Study of En Route Refuelling Behaviours of Conventional and Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
  25. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
  26. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
  27. Ba Hung, Nguyen & Lim, Ocktaeck, 2019. "The effects of operating conditions and structural parameters on the dynamic, electric consumption and power generation characteristics of an electric assisted bicycle," Applied Energy, Elsevier, vol. 247(C), pages 285-296.
  28. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
  29. Dillman, Kevin Joseph & Fazeli, Reza & Shafiei, Ehsan & Jónsson, Jón Örvar G. & Haraldsson, Hákon Valur & Davíðsdóttir, Brynhildur, 2021. "Spatiotemporal analysis of the impact of electric vehicle integration on Reykjavik's electrical system at the city and distribution system level," Utilities Policy, Elsevier, vol. 68(C).
  30. Lin, Haiyang & Bian, Caiyun & Wang, Yu & Li, Hailong & Sun, Qie & Wallin, Fredrik, 2022. "Optimal planning of intra-city public charging stations," Energy, Elsevier, vol. 238(PC).
  31. He, Yongxiu & Zhang, Qi & Pang, Yuexia, 2017. "The development pattern design of Chinese electric vehicles based on the analysis of the critical price of the life cycle cost," Energy Policy, Elsevier, vol. 109(C), pages 382-388.
  32. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
  33. Gulzari, Adeela & Wang, Yuchen & Prybutok, Victor, 2022. "A green experience with eco-friendly cars: A young consumer electric vehicle rental behavioral model," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
  34. Azadeh Ahkamiraad & Yong Wang, 2018. "An Agent-Based Model for Zip-Code Level Diffusion of Electric Vehicles and Electricity Consumption in New York City," Energies, MDPI, vol. 11(3), pages 1-17, March.
  35. Falcão, Eduardo Aparecido Moreira & Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2017. "Analysis of CO2 emissions and techno-economic feasibility of an electric commercial vehicle," Applied Energy, Elsevier, vol. 193(C), pages 297-307.
  36. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
  37. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
  38. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
  39. Jiang, Qinhua & Zhang, Ning & Yueshuai He, Brian & Lee, Changju & Ma, Jiaqi, 2024. "Large-scale public charging demand prediction with a scenario- and activity-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  40. Kumar Sunil & Jayaswal, Sachin & Garg, Amit, 2018. "Charging infrastructure optimization for electric buses using mixed integer linear programming," IIMA Working Papers WP 2018-12-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
  41. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
  42. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
  43. Yumiko Iwafune & Kazuhiko Ogimoto & Hitoshi Azuma, 2019. "Integration of Electric Vehicles into the Electric Power System Based on Results of Road Traffic Census," Energies, MDPI, vol. 12(10), pages 1-21, May.
  44. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
  45. Wang, Wanying & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Li, Xuefang, 2020. "An empirical evaluation of different usage pattern between car-sharing battery electric vehicles and private ones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 115-129.
  46. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.