IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12535-d678267.html
   My bibliography  Save this article

Future Policy and Technological Advancement Recommendations for Enhanced Adoption of Electric Vehicles in South Africa: A Survey and Review

Author

Listed:
  • Mokhele Edmond Moeletsi

    (Agricultural Research Council—Natural Resources and Engineering, Private Bag X79, Pretoria 0001, South Africa
    Business School, Nelson Mandela University, 2nd Avenue Campus, Summerstrand, Port Elizabeth 6001, South Africa
    Risk and Vulnerability Science Centre, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa)

Abstract

There are major concerns globally on the increasing population of internal combustion engine (ICE) vehicles and their environmental impact. The initiatives for the advancement of alternative propulsion systems, such as electric motors, have great opportunities, but are marked by a number of challenges that require major changes in policies and serious investment on the technologies in order to make them viable alternative mobility sources around the world. South Africa has struggled a lot in adopting electric vehicles among all the emerging countries. This is mostly attributed to a non-conducive environment for electric vehicle adoption. This study administered a survey consisting of Likert-scale questions in the Gauteng Province to gather information on people’s views on some of the major concerns around electric vehicle technology. The survey results demonstrated that Gauteng residents perceive electric vehicle price as the main constraint towards adoption of the technology and introduction of government policy towards addressing this challenge would be helpful. Some of the suggested interventions, such as the rollout of purchasing subsidies and tax rebates, received a high level of satisfaction among the respondents. Future initiatives that tackle issues of charging infrastructure network also received high satisfaction. Thus, there is a need for all stakeholders in the South African automotive industry to improve the enabling environment for the adoption of electric vehicles.

Suggested Citation

  • Mokhele Edmond Moeletsi, 2021. "Future Policy and Technological Advancement Recommendations for Enhanced Adoption of Electric Vehicles in South Africa: A Survey and Review," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12535-:d:678267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    2. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zunian Luo, 2022. "Cap or No Cap? What Can Governments Do to Promote EV Sales?," Papers 2212.08137, arXiv.org.
    2. Cristina López & Rocío Ruíz-Benítez & Carmen Vargas-Machuca, 2019. "On the Environmental and Social Sustainability of Technological Innovations in Urban Bus Transport: The EU Case," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    3. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    4. Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).
    5. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    6. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    7. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    8. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.
    9. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    11. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    12. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    13. Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).
    14. Rodrigues, João L. & Bolognesi, Hugo M. & Melo, Joel D. & Heymann, Fabian & Soares, F.J., 2019. "Spatiotemporal model for estimating electric vehicles adopters," Energy, Elsevier, vol. 183(C), pages 788-802.
    15. Amela Ajanovic & Marina Siebenhofer & Reinhard Haas, 2021. "Electric Mobility in Cities: The Case of Vienna," Energies, MDPI, vol. 14(1), pages 1-18, January.
    16. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
    17. Florian Straub & Simon Streppel & Dietmar Göhlich, 2021. "Methodology for Estimating the Spatial and Temporal Power Demand of Private Electric Vehicles for an Entire Urban Region Using Open Data," Energies, MDPI, vol. 14(8), pages 1-21, April.
    18. Sónia Almeida Neves & António Cardoso Marques & José Alberto Fuinhas, 2018. "Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 23-40, December.
    19. Jansen, Malte & Gross, Rob & Staffell, Iain, 2024. "Quantitative evidence for modelling electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Krishnan, V. Vijai & Sreekumar, M., 2023. "An integrated behavioral approach to analyze the adoption of electric vehicles in the context of a developing country," Transport Policy, Elsevier, vol. 142(C), pages 162-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12535-:d:678267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.