IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v179y2024ics0965856423003555.html
   My bibliography  Save this article

Large-scale public charging demand prediction with a scenario- and activity-based approach

Author

Listed:
  • Jiang, Qinhua
  • Zhang, Ning
  • Yueshuai He, Brian
  • Lee, Changju
  • Ma, Jiaqi

Abstract

Transportation system electrification is expected to bring millions of electric vehicles (EVs) on road within decades. Accurately predicting the charging demand is necessary to accommodate the surge in EV deployment. This paper presents a novel modeling framework to predict the public charging demand profile derived from people’s travel trajectories, with the consideration of the demand and supply stochasticity of transportation systems and the charging behavior heterogeneity of EV users. The vehicle charging decision-making process is explicitly modeled, and the charging need of each EV user is estimated associated with their travel trajectories. The methodology enables charging demand prediction with a high spatial–temporal resolution for transportation system electrification planning. A case study was conducted in Los Angeles County to predict the demand for public charging facilities in 2035 and perform corresponding spatial–temporal analysis of EV public charging under various scenarios of future electrification levels and network conditions.

Suggested Citation

  • Jiang, Qinhua & Zhang, Ning & Yueshuai He, Brian & Lee, Changju & Ma, Jiaqi, 2024. "Large-scale public charging demand prediction with a scenario- and activity-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transa:v:179:y:2024:i:c:s0965856423003555
    DOI: 10.1016/j.tra.2023.103935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423003555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azhar Ul-Haq & Marium Azhar & Yousef Mahmoud & Aqib Perwaiz & Essam A. Al-Ammar, 2017. "Probabilistic Modeling of Electric Vehicle Charging Pattern Associated with Residential Load for Voltage Unbalance Assessment," Energies, MDPI, vol. 10(9), pages 1-18, September.
    2. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    3. Florian Straub & Simon Streppel & Dietmar Göhlich, 2021. "Methodology for Estimating the Spatial and Temporal Power Demand of Private Electric Vehicles for an Entire Urban Region Using Open Data," Energies, MDPI, vol. 14(8), pages 1-21, April.
    4. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    5. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Sun, Fengchun, 2021. "Data-driven framework for large-scale prediction of charging energy in electric vehicles," Applied Energy, Elsevier, vol. 282(PB).
    6. Priessner, Alfons & Sposato, Robert & Hampl, Nina, 2018. "Predictors of electric vehicle adoption: An analysis of potential electric vehicle drivers in Austria," Energy Policy, Elsevier, vol. 122(C), pages 701-714.
    7. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    8. Mullan, Jonathan & Harries, David & Bräunl, Thomas & Whitely, Stephen, 2011. "Modelling the impacts of electric vehicle recharging on the Western Australian electricity supply system," Energy Policy, Elsevier, vol. 39(7), pages 4349-4359, July.
    9. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    10. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    11. Zhang, Cong & Greenblatt, Jeffery B. & MacDougall, Pamela & Saxena, Samveg & Jayam Prabhakar, Aditya, 2020. "Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States," Applied Energy, Elsevier, vol. 270(C).
    12. He, Brian Yueshuai & Zhou, Jinkai & Ma, Ziyi & Wang, Ding & Sha, Di & Lee, Mina & Chow, Joseph Y.J. & Ozbay, Kaan, 2021. "A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City," Transport Policy, Elsevier, vol. 101(C), pages 145-161.
    13. Hsu, Chih-Wei & Fingerman, Kevin, 2021. "Public electric vehicle charger access disparities across race and income in California," Transport Policy, Elsevier, vol. 100(C), pages 59-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.
    3. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    4. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    5. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    6. Rodrigues, João L. & Bolognesi, Hugo M. & Melo, Joel D. & Heymann, Fabian & Soares, F.J., 2019. "Spatiotemporal model for estimating electric vehicles adopters," Energy, Elsevier, vol. 183(C), pages 788-802.
    7. Florian Straub & Simon Streppel & Dietmar Göhlich, 2021. "Methodology for Estimating the Spatial and Temporal Power Demand of Private Electric Vehicles for an Entire Urban Region Using Open Data," Energies, MDPI, vol. 14(8), pages 1-21, April.
    8. Thi Ngoc Nguyen & Felix Muesgens, 2024. "Fuel tax loss in a world of electric mobility: A window of opportunity for congestion pricing," Papers 2409.20033, arXiv.org.
    9. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    10. Nazari-Heris, Morteza & Loni, Abdolah & Asadi, Somayeh & Mohammadi-ivatloo, Behnam, 2022. "Toward social equity access and mobile charging stations for electric vehicles: A case study in Los Angeles," Applied Energy, Elsevier, vol. 311(C).
    11. Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
    12. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    14. Dominik Husarek & Vjekoslav Salapic & Simon Paulus & Michael Metzger & Stefan Niessen, 2021. "Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration," Energies, MDPI, vol. 14(23), pages 1-27, November.
    15. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    16. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    17. Jiehong Lou & Xingchi Shen & Deb A. Niemeier & Nathan Hultman, 2024. "Income and racial disparity in household publicly available electric vehicle infrastructure accessibility," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Sarah A. Steinbach & Maximilian J. Blaschke, 2024. "How grid reinforcement costs differ by the income of electric vehicle users," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    20. Fretzen, Ulrich & Ansarin, Mohammad & Brandt, Tobias, 2021. "Temporal city-scale matching of solar photovoltaic generation and electric vehicle charging," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:179:y:2024:i:c:s0965856423003555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.