IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v100y2017icp115-132.html
   My bibliography  Save this article

Optimal recharging scheduling for urban electric buses: A case study in Davis

Author

Listed:
  • Wang, Yusheng
  • Huang, Yongxi
  • Xu, Jiuping
  • Barclay, Nicole

Abstract

In this paper, a modeling framework to optimize electric bus recharging schedules is developed, which determines both the planning and operational decisions while minimizing total annual costs. The model is demonstrated using a real-world transit network based in Davis, California. The results showed that range anxiety can be eliminated by adopting certain recharging strategies. Sensitivity analyses revealed that the model could provide transit agencies with comprehensive guidance on the utilization of electric buses and development of a fast charging system. The comparative analyses showed that it was more economical and environmentally friendly to utilize electric buses than diesel buses.

Suggested Citation

  • Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
  • Handle: RePEc:eee:transe:v:100:y:2017:i:c:p:115-132
    DOI: 10.1016/j.tre.2017.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516305725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2015. "Value of the energy storage system in an electric bus fast charging station," Applied Energy, Elsevier, vol. 157(C), pages 630-639.
    2. Wang, Jinghui & Rakha, Hesham A., 2016. "Fuel consumption model for conventional diesel buses," Applied Energy, Elsevier, vol. 170(C), pages 394-402.
    3. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    4. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    5. Soylu, Seref, 2015. "Development of PN emission factors for the real world urban driving conditions of a hybrid city bus," Applied Energy, Elsevier, vol. 138(C), pages 488-495.
    6. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    7. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    8. Qin, Nan & Gusrialdi, Azwirman & Paul Brooker, R. & T-Raissi, Ali, 2016. "Numerical analysis of electric bus fast charging strategies for demand charge reduction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 386-396.
    9. Ke, Bwo-Ren & Chung, Chen-Yuan & Chen, Yen-Chang, 2016. "Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu," Applied Energy, Elsevier, vol. 177(C), pages 649-660.
    10. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    11. Miles, John & Potter, Stephen, 2014. "Developing a viable electric bus service: The Milton Keynes demonstration project," Research in Transportation Economics, Elsevier, vol. 48(C), pages 357-363.
    12. Li, Shengyin & Huang, Yongxi, 2014. "Heuristic approaches for the flow-based set covering problem with deviation paths," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 144-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    3. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    5. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    6. Krzysztof Zagrajek & Józef Paska & Mariusz Kłos & Karol Pawlak & Piotr Marchel & Magdalena Bartecka & Łukasz Michalski & Paweł Terlikowski, 2020. "Impact of Electric Bus Charging on Distribution Substation and Local Grid in Warsaw," Energies, MDPI, vol. 13(5), pages 1-13, March.
    7. Dennis Dreier & Björn Rudin & Mark Howells, 2020. "Comparison of management strategies for the charging schedule and all-electric operation of a plug-in hybrid-electric bi-articulated bus fleet," Public Transport, Springer, vol. 12(2), pages 363-404, June.
    8. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    9. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    10. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    11. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    12. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    13. Saadon Al-Ogaili, Ali & Ramasamy, Agileswari & Juhana Tengku Hashim, Tengku & Al-Masri, Ahmed N. & Hoon, Yap & Neamah Jebur, Mustafa & Verayiah, Renuga & Marsadek, Marayati, 2020. "Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study," Applied Energy, Elsevier, vol. 280(C).
    14. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    15. Ayman Abdelwahed & Pieter L. van den Berg & Tobias Brandt & Wolfgang Ketter & Judith Mulder, 2021. "A Boost for Urban Sustainability: Optimizing Electric Transit Bus Networks in Rotterdam," Interfaces, INFORMS, vol. 51(5), pages 391-407, September.
    16. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    17. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    18. Guo, Fang & Yang, Jun & Lu, Jianyi, 2018. "The battery charging station location problem: Impact of users’ range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 1-18.
    19. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    20. Scheiper, Barbara & Schiffer, Maximilian & Walther, Grit, 2019. "The flow refueling location problem with load flow control," Omega, Elsevier, vol. 83(C), pages 50-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:100:y:2017:i:c:p:115-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.