IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v59y2016icp895-906.html
   My bibliography  Save this item

Thermal comfort in educational buildings: A review article

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Antonio J. Aguilar & María L. de la Hoz-Torres & Diego P. Ruiz & Mª Dolores Martínez-Aires, 2022. "Monitoring and Assessment of Indoor Environmental Conditions in Educational Building Using Building Information Modelling Methodology," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
  2. Claudia Valderrama-Ulloa & Lorena Silva-Castillo & Catalina Sandoval-Grandi & Carlos Robles-Calderon & Fabien Rouault, 2020. "Indoor Environmental Quality in Latin American Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
  3. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
  4. Liu, Gang & Chen, Huizhen & Yuan, Ye & Song, Chenge, 2024. "Indoor thermal environment and human health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  5. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
  6. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
  7. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
  8. Miguel Ángel Campano & Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Juan José Sendra, 2019. "Thermal Perception in Mild Climate: Adaptive Thermal Models for Schools," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
  9. Fabio Fantozzi & Hassan Hamdi & Michele Rocca & Stefano Vegnuti, 2019. "Use of Automated Control Systems and Advanced Energy Simulations in the Design of Climate Responsive Educational Building for Mediterranean Area," Sustainability, MDPI, vol. 11(6), pages 1-22, March.
  10. Milen Balbis-Morejón & Javier M. Rey-Hernández & Carlos Amaris-Castilla & Eloy Velasco-Gómez & Julio F. San José-Alonso & Francisco Javier Rey-Martínez, 2020. "Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
  11. Portia Odell & Vanessa Rauland & Karen Murcia, 2020. "Schools: An Untapped Opportunity for a Carbon Neutral Future," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
  12. Betty Lala & Solli Murtyas & Aya Hagishima, 2022. "Indoor Thermal Comfort and Adaptive Thermal Behaviors of Students in Primary Schools Located in the Humid Subtropical Climate of India," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  13. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
  14. Hugo Valdés & Christian Correa & Felipe Mellado, 2018. "Proposed Model of Sustainable Construction Skills for Engineers in Chile," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
  15. Oriol Pons & Saeid Habibi & Diana Peña, 2018. "Sustainability Assessment of Household Waste Based Solar Control Devices for Workshops in Primary Schools," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
  16. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
  17. Abad, B. & Borca-Tasciuc, D.-A. & Martin-Gonzalez, M.S., 2017. "Non-contact methods for thermal properties measurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1348-1370.
  18. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
  19. Agustín Zaballos & Alan Briones & Alba Massa & Pol Centelles & Víctor Caballero, 2020. "A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring," Sustainability, MDPI, vol. 12(21), pages 1-33, November.
  20. Shalin Bidassey-Manilal & Caradee Yael Wright & Thandi Kapwata & Joyce Shirinde, 2020. "A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
  21. Vicente López-Chao & Antonio Amado Lorenzo & Jorge Martin-Gutiérrez, 2019. "Architectural Indoor Analysis: A Holistic Approach to Understand the Relation of Higher Education Classrooms and Academic Performance," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
  22. Georgios Martinopoulos & Vasiliki Kikidou & Dimitrios Bozis, 2018. "Energy Assessment of Building Physics Principles in Secondary Education Buildings," Energies, MDPI, vol. 11(11), pages 1-15, October.
  23. Schmidt, Mischa & Åhlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.
  24. Jitka Mohelníková & Miloslav Novotný & Pavla Mocová, 2020. "Evaluation of School Building Energy Performance and Classroom Indoor Environment," Energies, MDPI, vol. 13(10), pages 1-17, May.
  25. Hong, Taehoon & Kim, Jimin & Lee, Myeonghwi, 2018. "Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes," Applied Energy, Elsevier, vol. 228(C), pages 1707-1713.
  26. Roberto Zanetti Freire & Gerson Henrique dos Santos & Leandro dos Santos Coelho, 2017. "Hygrothermal Dynamic and Mould Growth Risk Predictions for Concrete Tiles by Using Least Squares Support Vector Machines," Energies, MDPI, vol. 10(8), pages 1, July.
  27. Xin Yuan & Yuji Ryu, 2022. "Evaluation of Children’s Thermal Environment in Nursery School: Through the Questionnaire and Measurement of Wearable Sensors Approach," IJERPH, MDPI, vol. 19(5), pages 1-19, March.
  28. Atiq Ur Rehman & Nouman Ghafoor & Shakil R. Sheikh & Zareena Kausar & Fawad Rauf & Farooq Sher & Muhammad Faizan Shah & Haseeb Yaqoob, 2021. "A Study of Hot Climate Low-Cost Low-Energy Eco-Friendly Building Envelope with Embedded Phase Change Material," Energies, MDPI, vol. 14(12), pages 1-23, June.
  29. Yizhe Xu & Chengchu Yan & Hao Qian & Liang Sun & Gang Wang & Yanlong Jiang, 2021. "A Novel Optimization Method for Conventional Primary and Secondary School Classrooms in Southern China Considering Energy Demand, Thermal Comfort and Daylighting," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
  30. Apriesnig, Jenny L. & Manning, Dale T. & Suter, Jordan F. & Magzamen, Sheryl & Cross, Jennifer E., 2020. "Academic stars and Energy Stars, an assessment of student academic achievement and school building energy efficiency," Energy Policy, Elsevier, vol. 147(C).
  31. Salvador Boix-Vilella & Elena Saiz-Clar & Eva León-Zarceño & Miguel Angel Serrano, 2021. "Influence of Air Temperature on School Teachers’ Mood and the Perception of Students’ Behavior," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
  32. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
  33. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
  34. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  35. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
  36. Elisabeti F. T. Barbosa & Lucila C. Labaki & Adriana P. A. S. Castro & Felipe S. D. Lopes, 2024. "Energy Efficiency and Thermal Comfort Analysis in a Higher Education Building in Brazil," Sustainability, MDPI, vol. 16(1), pages 1-25, January.
  37. Michał Piasecki & Małgorzata Fedorczak-Cisak & Marcin Furtak & Jacek Biskupski, 2019. "Experimental Confirmation of the Reliability of Fanger’s Thermal Comfort Model—Case Study of a Near-Zero Energy Building (NZEB) Office Building," Sustainability, MDPI, vol. 11(9), pages 1-25, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.