IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7072-d834970.html
   My bibliography  Save this article

Indoor Thermal Comfort and Adaptive Thermal Behaviors of Students in Primary Schools Located in the Humid Subtropical Climate of India

Author

Listed:
  • Betty Lala

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga City 816-8580, Japan)

  • Solli Murtyas

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga City 816-8580, Japan)

  • Aya Hagishima

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga City 816-8580, Japan)

Abstract

This study investigated children’s perceptions and adaptive behaviors related to indoor thermal conditions of classrooms in primary schools with no air-conditioning systems during both summer and winter in Dehradun City, Uttarakhand, India. Responses were collected from 5297 school children aged 6–13 years. During the measurement periods, 100% and 94% of the samples were obtained under conditions outside an 80% thermally acceptable comfort range in winter and summer, respectively. The analysis using receiver operating characteristics suggested that the students had the least sensitivity to the temperature variation for all scales of the thermal sensation vote (TSV). Approximately 95.1% of students were “very satisfied”, “satisfied”, or “slightly satisfied” with the thermal conditions under the condition of “extreme caution” or “danger” of heat risk. In contrast, adaptive thermal behaviors, such as adjusting clothing insulation ensembles, opening or closing classroom windows and doors, and utilizing ceiling fans, were found to be the most affordable options for optimizing indoor thermal comfort. Children’s reports of thermal sensations and thermal satisfaction did not correspond to the actual physical environment. This draws attention to the adequacy of applying widely used methods of TSV-based identification of the thermal comfort range in classrooms for children, especially in hot environments. The findings of this study are expected to serve as an evidence-based reference for local governments and authorities to take appropriate measures to mitigate heat risks for schoolchildren in the future.

Suggested Citation

  • Betty Lala & Solli Murtyas & Aya Hagishima, 2022. "Indoor Thermal Comfort and Adaptive Thermal Behaviors of Students in Primary Schools Located in the Humid Subtropical Climate of India," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7072-:d:834970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Han-Hsi & Lin, Tzu-Ping & Hwang, Ruey-Lung, 2012. "Linking occupants’ thermal perception and building thermal performance in naturally ventilated school buildings," Applied Energy, Elsevier, vol. 94(C), pages 355-363.
    2. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    3. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    4. Solli Murtyas & Nishat T Toosty & Aya Hagishima & N H Kusumaningdyah, 2021. "Relation between occupants’ health problems, demographic and indoor environment subjective evaluations: A cross-sectional questionnaire survey study in Java Island, Indonesia," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    2. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    3. Mishan Shrestha & Hom Bahadur Rijal, 2023. "Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings," Energies, MDPI, vol. 16(3), pages 1-33, January.
    4. Xin Yuan & Yuji Ryu, 2022. "Evaluation of Children’s Thermal Environment in Nursery School: Through the Questionnaire and Measurement of Wearable Sensors Approach," IJERPH, MDPI, vol. 19(5), pages 1-19, March.
    5. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    6. Girish Rentala & Yimin Zhu & Neil M. Johannsen, 2021. "Impact of Outdoor Temperature Variations on Thermal State in Experiments Using Immersive Virtual Environment," Sustainability, MDPI, vol. 13(19), pages 1-36, September.
    7. Agustín Zaballos & Alan Briones & Alba Massa & Pol Centelles & Víctor Caballero, 2020. "A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring," Sustainability, MDPI, vol. 12(21), pages 1-33, November.
    8. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    9. Liu, Gang & Chen, Huizhen & Yuan, Ye & Song, Chenge, 2024. "Indoor thermal environment and human health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    11. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    12. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    13. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    14. Oriol Pons & Saeid Habibi & Diana Peña, 2018. "Sustainability Assessment of Household Waste Based Solar Control Devices for Workshops in Primary Schools," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    15. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    16. Shalin Bidassey-Manilal & Caradee Yael Wright & Thandi Kapwata & Joyce Shirinde, 2020. "A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    17. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
    18. Abad, B. & Borca-Tasciuc, D.-A. & Martin-Gonzalez, M.S., 2017. "Non-contact methods for thermal properties measurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1348-1370.
    19. Hong, Taehoon & Kim, Jimin & Lee, Myeonghwi, 2018. "Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes," Applied Energy, Elsevier, vol. 228(C), pages 1707-1713.
    20. Rana Elnaklah & Yara Ayyad & Saba Alnusairat & Husam AlWaer & Abdulsalam AlShboul, 2023. "A Comparison of Students’ Thermal Comfort and Perceived Learning Performance between Two Types of University Halls: Architecture Design Studios and Ordinary Lecture Rooms during the Heating Season," Sustainability, MDPI, vol. 15(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7072-:d:834970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.