IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4180-d254233.html
   My bibliography  Save this article

The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics

Author

Listed:
  • Carolina Rodriguez

    (Assistant Lecturer and Researcher at the Architecture Program, University Piloto de Colombia, Bogotá, Colombia, Carrera 9 No. 45A–44, Bogotá 110311, Colombia)

  • María Coronado

    (Assistant Lecturer and Researcher at the Architecture Program, University Piloto de Colombia, Bogotá, Colombia, Carrera 9 No. 45A–44, Bogotá 110311, Colombia)

  • Marta D’Alessandro

    (Architecture, Built Environment and Construction Engineering Department (ABC), Polytechnic University of Milan; Campus Leonardo, via Bonardi 9, 20133 Milan, Italy)

  • Juan Medina

    (Architecture Department, University of Los Andes, Bogota, Colombia, Cra 1 Nº 18A–12, 111711 Bogotá, Colombia)

Abstract

Thermal comfort in the built environment is one of the most defining parameters influencing energy use, environmental quality, and occupant satisfaction. Unfortunately, there is a lack of research in this area within developing countries, which are becoming increasingly urbanised and where mechanical air conditioning demands are rising. Many of these countries are adopting thermal comfort standards such as the ASHRAE Standard 55, the EN 15251, and the ISO 7730 to regulate the use of air-conditioning; even when these standards have been widely criticised for their inadequacy within geographical regions different to the ones that they were designed for. Research suggests the need to confirm these models through further post-occupancy studies and fieldwork. Deficiencies in data collection and methodologies are thought to require particular attention to develop algorithms that can predict thermal comfort levels accurately. Comprehensive strategies considering interrelated psychological, physiological and social factors are needed. This manuscript highlights gaps of research, specifically within tropical developing countries, through the analysis of Colombia as a case study. It emphasises the importance of standardised fieldwork data and gives examples of alternative collection systems. This aims to contribute to the understanding of occupant´s adaptive behaviours and their impact on the mitigation of climate change.

Suggested Citation

  • Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4180-:d:254233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Yau, Y.H. & Hasbi, S., 2013. "A review of climate change impacts on commercial buildings and their technical services in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 430-441.
    4. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    5. Sivak, Michael, 2009. "Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries," Energy Policy, Elsevier, vol. 37(4), pages 1382-1384, April.
    6. Rupp, Ricardo Forgiarini & Ghisi, Enedir, 2014. "What is the most adequate method to assess thermal comfort in hybrid commercial buildings located in hot-humid summer climate?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 449-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alba Alegría-Sala & Elisenda Clèries Tardío & Lluc Canals Casals & Marcel Macarulla & Jaume Salom, 2022. "CO 2 Concentrations and Thermal Comfort Analysis at Onsite and Online Educational Environments," IJERPH, MDPI, vol. 19(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    2. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    3. Ferdinando Salata & Anna Tarsitano & Iacopo Golasi & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings," Energies, MDPI, vol. 9(10), pages 1-18, October.
    4. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    5. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    6. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    7. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    8. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    9. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    10. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    11. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    12. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    13. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    14. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    15. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    16. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    17. Touretzky, Cara R. & Patil, Rakesh, 2015. "Building-level power demand forecasting framework using building specific inputs: Development and applications," Applied Energy, Elsevier, vol. 147(C), pages 466-477.
    18. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    19. Milen Balbis-Morejón & Javier M. Rey-Hernández & Carlos Amaris-Castilla & Eloy Velasco-Gómez & Julio F. San José-Alonso & Francisco Javier Rey-Martínez, 2020. "Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    20. Adam Kula & Albert Smalcerz & Maciej Sajkowski & Zygmunt Kamiński, 2021. "Analysis of Office Rooms Energy Consumption Data in Respect to Meteorological and Direct Sun Exposure Conditions," Energies, MDPI, vol. 14(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4180-:d:254233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.