IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i15p5531-d392494.html
   My bibliography  Save this article

A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa

Author

Listed:
  • Shalin Bidassey-Manilal

    (Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa)

  • Caradee Yael Wright

    (Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
    Environment & Health Research Unit, South African Medical Research Council, P.O. Box 87373, Houghton, Johannesburg 2041, South Africa)

  • Thandi Kapwata

    (Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
    Environment & Health Research Unit, South African Medical Research Council, P.O. Box 87373, Houghton, Johannesburg 2041, South Africa)

  • Joyce Shirinde

    (The School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa)

Abstract

Climate models predict that the global average temperature of Earth will rise in the future. Studies show that high classroom temperatures can affect the ability of the student to learn and function. It is important to understand the impact that heat will have on the health, wellbeing, and academic performance of learners, as they spend a significant amount of time in classrooms compared to any other environment. A follow-up panel study among 20 public primary schools in the Gauteng province (South Africa) will be carried out, in which Grade 4 learners will be selected to complete an hourly heat-health symptom questionnaire. A Cambridge Neuropsychological Test Automated Battery (CANTAB) test will be used to determine their memory and attention span. A nursing practitioner will measure body weight, height, and temperature. Lascar data loggers will be used to measure indoor classroom temperature. School principals will complete a questionnaire on existing school coping mechanisms and policies in place that help deal with hot weather conditions. This is the first study to quantitatively assess the effects of heat on learners’ health, well-being and school performance in South Africa. The outcomes of this study will enable policymakers and public officials to develop appropriate school heat adaptation and mitigation measures and will assist in channeling their resources where it is most needed.

Suggested Citation

  • Shalin Bidassey-Manilal & Caradee Yael Wright & Thandi Kapwata & Joyce Shirinde, 2020. "A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5531-:d:392494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/15/5531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/15/5531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dapi N., Léonie & Rocklov, Joacim & Nguefack-Tsague, Georges & Tetanye, Ekoe & Kjellstrom, Tord, 2010. "Heat impact on schoolchildren in Cameroon, Africa: potential health threat from climate change," MPRA Paper 27335, University Library of Munich, Germany, revised 06 Nov 2010.
    2. United Nations Children's Fund UNICEF, 2015. "The Challenges of Climate Change: Children on the Front Line," Working Papers id:7920, eSocialSciences.
    3. Gall, E.T. & Carter, E.M. & Earnest, C.M. & Stephens, B., 2013. "Indoor air pollution in developing countries: Research and implementation needs for improvements in global public health," American Journal of Public Health, American Public Health Association, vol. 103(4), pages 67-72.
    4. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    5. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    6. Rebecca M. Garland & Mamopeli Matooane & Francois A. Engelbrecht & Mary-Jane M. Bopape & Willem A. Landman & Mogesh Naidoo & Jacobus Van der Merwe & Caradee Y. Wright, 2015. "Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health," IJERPH, MDPI, vol. 12(10), pages 1-28, October.
    7. Shalin Bidassey-Manilal & Caradee Y. Wright & Jacobus C. Engelbrecht & Patricia N. Albers & Rebecca M. Garland & Mamopeli Matooane, 2016. "Students’ Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures," IJERPH, MDPI, vol. 13(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Leal Filho & Muniyandi Balasubramanian & Roberto Ariel Abeldaño Zuñiga & Javier Sierra, 2023. "The Effects of Climate Change on Children’s Education Attainment," Sustainability, MDPI, vol. 15(7), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thandi Kapwata & Michael T. Gebreslasie & Angela Mathee & Caradee Yael Wright, 2018. "Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    2. Caradee Y. Wright & D. Jean du Preez & Danielle A. Millar & Mary Norval, 2020. "The Epidemiology of Skin Cancer and Public Health Strategies for Its Prevention in Southern Africa," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    3. Shalin Bidassey-Manilal & Caradee Y. Wright & Jacobus C. Engelbrecht & Patricia N. Albers & Rebecca M. Garland & Mamopeli Matooane, 2016. "Students’ Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures," IJERPH, MDPI, vol. 13(6), pages 1-20, June.
    4. Espinoza-Delgado, José & Silber, Jacques, 2018. "Multi-dimensional poverty among adults in Central America and gender differences in the three I’s of poverty: Applying inequality sensitive poverty measures with ordinal variables," MPRA Paper 88750, University Library of Munich, Germany.
    5. Gianluigi De Gennaro & Paolo Rosario Dambruoso & Alessia Di Gilio & Valerio Di Palma & Annalisa Marzocca & Maria Tutino, 2015. "Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System," IJERPH, MDPI, vol. 13(1), pages 1-9, December.
    6. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    7. Vicky Pule & Angela Mathee & Paula Melariri & Thandi Kapwata & Nada Abdelatif & Yusentha Balakrishna & Zamantimande Kunene & Mirriam Mogotsi & Bianca Wernecke & Caradee Yael Wright, 2021. "Classroom Temperature and Learner Absenteeism in Public Primary Schools in the Eastern Cape, South Africa," IJERPH, MDPI, vol. 18(20), pages 1-17, October.
    8. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    9. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    10. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    11. Agustín Zaballos & Alan Briones & Alba Massa & Pol Centelles & Víctor Caballero, 2020. "A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring," Sustainability, MDPI, vol. 12(21), pages 1-33, November.
    12. Refiloe Masekela & Aneesa Vanker, 2020. "Lung Health in Children in Sub-Saharan Africa: Addressing the Need for Cleaner Air," IJERPH, MDPI, vol. 17(17), pages 1-13, August.
    13. Caradee Y. Wright & Angela Mathee & Cheryl Goldstone & Natasha Naidoo & Thandi Kapwata & Bianca Wernecke & Zamantimande Kunene & Danielle A. Millar, 2023. "Developing a Healthy Environment Assessment Tool (HEAT) to Address Heat-Health Vulnerability in South African Towns in a Warming World," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    14. Mehzabeen Mannan & Sami G. Al-Ghamdi, 2021. "Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure," IJERPH, MDPI, vol. 18(6), pages 1-25, March.
    15. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    16. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    17. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    18. Liu, Gang & Chen, Huizhen & Yuan, Ye & Song, Chenge, 2024. "Indoor thermal environment and human health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    20. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5531-:d:392494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.