IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i1p462-d1313272.html
   My bibliography  Save this article

Energy Efficiency and Thermal Comfort Analysis in a Higher Education Building in Brazil

Author

Listed:
  • Elisabeti F. T. Barbosa

    (Graduate Program on Architecture, Technology and City, School of Civil Engineering, Architecture and Urban Design, University of Campinas (UNICAMP), Campinas 13083-889, SP, Brazil)

  • Lucila C. Labaki

    (Graduate Program on Architecture, Technology and City, School of Civil Engineering, Architecture and Urban Design, University of Campinas (UNICAMP), Campinas 13083-889, SP, Brazil)

  • Adriana P. A. S. Castro

    (Graduate Program on Architecture, Technology and City, School of Civil Engineering, Architecture and Urban Design, University of Campinas (UNICAMP), Campinas 13083-889, SP, Brazil)

  • Felipe S. D. Lopes

    (Departament of Science and Technology, Federal University of Amapá (UNIFAP), Macapá 49100-000, AP, Brazil)

Abstract

Thermal comfort is extremely important in architecture, especially in environments with more people spending longer time on studies or intellectual activities. This research describes a case study designed to investigate the energy and thermal performance of university buildings as part of the ANEEL programme. Because of this importance and the need to save energy in Brazilian public buildings, ANEEL—the Brazilian Energy Electricity Regulatory Agency—launched a national programme focusing on energy efficiency in public universities in 2016. University offices and classrooms sustain high intellectual effort; thus, environmental comfort is critical for maintaining their users’ physical and mental health. This study included a pre-diagnosis of the performance of the envelope, lighting, and air-conditioning systems and a survey about the quality of the environments from the user’s point of view. The Prescriptive Method of the Brazilian Labelling Program (PBE) for Commercial, Service, and Public Buildings (RTQ-C) was used to assess the building performance. Statistical analysis was applied to correlate the quality and thermal preference of the users, with reference to the predicted mean vote and the predicted percentage of dissatisfied (PMV-PPD). The results showed a high rate of thermal discomfort in both study environments, even when using air conditioning.

Suggested Citation

  • Elisabeti F. T. Barbosa & Lucila C. Labaki & Adriana P. A. S. Castro & Felipe S. D. Lopes, 2024. "Energy Efficiency and Thermal Comfort Analysis in a Higher Education Building in Brazil," Sustainability, MDPI, vol. 16(1), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:462-:d:1313272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Skillington, Katie & Crawford, Robert H. & Warren-Myers, Georgia & Davidson, Kathryn, 2022. "A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings," Energy Policy, Elsevier, vol. 168(C).
    2. Tong, Shi Wun & Goh, Wei Peng & Huang, Xiaohu & Jiang, Changyun, 2021. "A review of transparent-reflective switchable glass technologies for building facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    2. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    3. Agustín Zaballos & Alan Briones & Alba Massa & Pol Centelles & Víctor Caballero, 2020. "A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring," Sustainability, MDPI, vol. 12(21), pages 1-33, November.
    4. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    5. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Liu, Gang & Chen, Huizhen & Yuan, Ye & Song, Chenge, 2024. "Indoor thermal environment and human health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    8. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    9. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    10. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    11. Oriol Pons & Saeid Habibi & Diana Peña, 2018. "Sustainability Assessment of Household Waste Based Solar Control Devices for Workshops in Primary Schools," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    12. Shalin Bidassey-Manilal & Caradee Yael Wright & Thandi Kapwata & Joyce Shirinde, 2020. "A Study Protocol to Determine Heat-Related Health Impacts among Primary Schoolchildren in South Africa," IJERPH, MDPI, vol. 17(15), pages 1-12, July.
    13. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Abad, B. & Borca-Tasciuc, D.-A. & Martin-Gonzalez, M.S., 2017. "Non-contact methods for thermal properties measurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1348-1370.
    15. Hong, Taehoon & Kim, Jimin & Lee, Myeonghwi, 2018. "Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes," Applied Energy, Elsevier, vol. 228(C), pages 1707-1713.
    16. Apriesnig, Jenny L. & Manning, Dale T. & Suter, Jordan F. & Magzamen, Sheryl & Cross, Jennifer E., 2020. "Academic stars and Energy Stars, an assessment of student academic achievement and school building energy efficiency," Energy Policy, Elsevier, vol. 147(C).
    17. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    18. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    19. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Borys Basok & Anatoliy Pavlenko & Volodymyr Novikov & Hanna Koshlak & Anita Ciosek & Maryna Moroz, 2024. "Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach," Energies, MDPI, vol. 17(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:462-:d:1313272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.