Hygrothermal Dynamic and Mould Growth Risk Predictions for Concrete Tiles by Using Least Squares Support Vector Machines
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jin Woo Moon & Min Hee Chung & Hayub Song & Se-Young Lee, 2016. "Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature," Energies, MDPI, vol. 9(12), pages 1-16, December.
- Boixo, Sergio & Diaz-Vicente, Marian & Colmenar, Antonio & Castro, Manuel Alonso, 2012. "Potential energy savings from cool roofs in Spain and Andalusia," Energy, Elsevier, vol. 38(1), pages 425-438.
- Ciulla, Giuseppina & Lo Brano, Valerio & D’Amico, Antonino, 2016. "Modelling relationship among energy demand, climate and office building features: A cluster analysis at European level," Applied Energy, Elsevier, vol. 183(C), pages 1021-1034.
- Ana Ogando & Natalia Cid & Marta Fernández, 2017. "Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain," Energies, MDPI, vol. 10(6), pages 1-17, June.
- Jin Woo Moon & Kyungjae Kim & Hyunsuk Min, 2015. "ANN-Based Prediction and Optimization of Cooling System in Hotel Rooms," Energies, MDPI, vol. 8(10), pages 1-21, September.
- Hao Cheng & Xinke Wang & Min Zhou, 2017. "Optimized Design and Feasibility of a Heating System with Energy Storage by Pebble Bed in a Solar Attic," Energies, MDPI, vol. 10(3), pages 1-14, March.
- Yu-Ri Kim & Hae Jin Kang, 2016. "Development of a Mobile Application for Building Energy Prediction Using Performance Prediction Model," Energies, MDPI, vol. 9(3), pages 1-16, March.
- Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
- Domenico Mazzeo & Giuseppe Oliveti & Natale Arcuri, 2017. "A Method for Thermal Dimensioning and for Energy Behavior Evaluation of a Building Envelope PCM Layer by Using the Characteristic Days," Energies, MDPI, vol. 10(5), pages 1-19, May.
- Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
- Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
- Jin Woo Moon & Sung Kwon Jung & Yong Oh Lee & Sangsun Choi, 2015. "Prediction Performance of an Artificial Neural Network Model for the Amount of Cooling Energy Consumption in Hotel Rooms," Energies, MDPI, vol. 8(8), pages 1-18, August.
- Belusko, M. & Bruno, F. & Saman, W., 2011. "Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up," Applied Energy, Elsevier, vol. 88(1), pages 127-137, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stéfano Frizzo Stefenon & Roberto Zanetti Freire & Leandro dos Santos Coelho & Luiz Henrique Meyer & Rafael Bartnik Grebogi & William Gouvêa Buratto & Ademir Nied, 2020. "Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System," Energies, MDPI, vol. 13(2), pages 1-19, January.
- Hara Prasada Tripathy & Priyabrata Pattanaik & Dilip Kumar Mishra & William Holderbaum, 2023. "Heat and Moisture Management for Automatic Air Conditioning of a Domestic Household Using FA-ZnO Nanocomposite as Smart Sensing Material," Energies, MDPI, vol. 16(6), pages 1-12, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
- Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
- Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
- Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
- Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).
- Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
- Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
- Zhongping Liu & Baisong Su & Qingjing Ji & Yan Hu, 2024. "Local Iterative Calculation Method and Fault Analysis of Short-Circuit Current in High-Voltage Grid with Large-Scale New Energy Equipment Integration," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
- Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
- Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
- Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
- Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
- Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
- Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
More about this item
Keywords
support vector machines; machine learning; system identification; concrete tiles; hygrothermal performance; mould growth;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1093-:d:105884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.