My bibliography
Save this item
Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saman Nikkhah & Arman Alahyari & Adib Allahham & Khaled Alawasa, 2023. "Optimal Integration of Hybrid Energy Systems: A Security-Constrained Network Topology Reconfiguration," Energies, MDPI, vol. 16(6), pages 1-19, March.
- Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
- Sulaiman Z. Almutairi & Emad A. Mohamed & Fayez F. M. El-Sousy, 2023. "A Novel Adaptive Manta-Ray Foraging Optimization for Stochastic ORPD Considering Uncertainties of Wind Power and Load Demand," Mathematics, MDPI, vol. 11(11), pages 1-35, June.
- Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
- Sharma, Akanksha & Jain, Sanjay K., 2021. "Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system," Energy, Elsevier, vol. 223(C).
- Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
- Alizadeh, Ali & Esfahani, Moein & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2024. "A useable multi-level BESSs sizing model for low-level data accessibility with risk assessment application under marketization and high uncertainties," Energy, Elsevier, vol. 290(C).
- Faraz Bhurt & Aamir Ali & Muhammad U. Keerio & Ghulam Abbas & Zahoor Ahmed & Noor H. Mugheri & Yun-Su Kim, 2023. "Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation," Energies, MDPI, vol. 16(13), pages 1-22, June.
- Huiru Zhao & Hao Lu & Bingkang Li & Xuejie Wang & Shiying Zhang & Yuwei Wang, 2020. "Stochastic Optimization of Microgrid Participating Day-Ahead Market Operation Strategy with Consideration of Energy Storage System and Demand Response," Energies, MDPI, vol. 13(5), pages 1-16, March.
- Mohamed Farhat & Salah Kamel & Ahmed M. Atallah & Mohamed H. Hassan & Ahmed M. Agwa, 2022. "ESMA-OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem," Sustainability, MDPI, vol. 14(4), pages 1-33, February.
- Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
- Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
- Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
- Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
- Hung, Tzu-Chieh & Chong, John & Chan, Kuei-Yuan, 2017. "Reducing uncertainty accumulation in wind-integrated electrical grid," Energy, Elsevier, vol. 141(C), pages 1072-1083.
- Rabiee, Abbas & Nikkhah, Saman & Soroudi, Alireza, 2018. "Information gap decision theory to deal with long-term wind energy planning considering voltage stability," Energy, Elsevier, vol. 147(C), pages 451-463.
- Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
- Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2022. "Coordinated voltage control in unbalanced distribution networks with two-stage distributionally robust chance-constrained receding horizon control," Renewable Energy, Elsevier, vol. 198(C), pages 907-915.
- Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.
- Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
- Wang, Ni & Li, Jian & Yu, Xiang & Zhou, Dao & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2020. "Optimal active and reactive power cooperative dispatch strategy of wind farm considering levelised production cost minimisation," Renewable Energy, Elsevier, vol. 148(C), pages 113-123.
- Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
- Samimi, Abouzar & Nikzad, Mehdi & Siano, Pierluigi, 2017. "Scenario-based stochastic framework for coupled active and reactive power market in smart distribution systems with demand response programs," Renewable Energy, Elsevier, vol. 109(C), pages 22-40.
- Yang, Zaoli & Ghadamyari, Mojtaba & Khorramdel, Hossein & Seyed Alizadeh, Seyed Mehdi & Pirouzi, Sasan & Milani, Muhammed & Banihashemi, Farzad & Ghadimi, Noradin, 2021. "Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Zhang, Guozhou & Hu, Weihao & Cao, Di & Zhou, Dao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Coordinated active and reactive power dynamic dispatch strategy for wind farms to minimize levelized production cost considering system uncertainty: A soft actor-critic approach," Renewable Energy, Elsevier, vol. 218(C).
- Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhao, Shuang-Le & You, Guo-Dong & Hou, Xiao-Xin & Yu, Jia-Li & Li, Ling-Ling & Chen, Bo, 2023. "Improving the economic and environmental benefits of the energy system: A novel hybrid economic emission dispatch considering clean energy power uncertainty," Energy, Elsevier, vol. 285(C).
- Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Siano, Pierluigi, 2020. "Optimal generation scheduling of large-scale multi-zone combined heat and power systems," Energy, Elsevier, vol. 210(C).
- Yu, L. & Li, Y.P. & Huang, G.H., 2019. "Planning municipal-scale mixed energy system for stimulating renewable energy under multiple uncertainties - The City of Qingdao in Shandong Province, China," Energy, Elsevier, vol. 166(C), pages 1120-1133.
- Rabiee, Abbas & Mohseni-Bonab, Seyed Masoud, 2017. "Maximizing hosting capacity of renewable energy sources in distribution networks: A multi-objective and scenario-based approach," Energy, Elsevier, vol. 120(C), pages 417-430.