IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1261-d219153.html
   My bibliography  Save this article

Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme

Author

Listed:
  • Neda Hajibandeh

    (C-MAST, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Miadreza Shafie-khah

    (School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland)

  • Sobhan Badakhshan

    (Department of Electrical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran)

  • Jamshid Aghaei

    (Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran)

  • Sílvio J. P. S. Mariano

    (Instituto de Telecomunicações, 6201-001 Covilhã, Portugal
    University of Beira Interior, 6201-001 Covilhã, Portugal)

  • João P. S. Catalão

    (Faculty of Engineering of the University of Porto and INESC TEC, 4200-465 Porto, Portugal)

Abstract

Demand response (DR) is known as a key solution in modern power systems and electricity markets for mitigating wind power uncertainties. However, effective incorporation of DR into power system operation scheduling needs knowledge of the price–elastic demand curve that relies on several factors such as estimation of a customer’s elasticity as well as their participation level in DR programs. To overcome this challenge, this paper proposes a novel autonomous DR scheme without prediction of the price–elastic demand curve so that the DR providers apply their selected load profiles ranked in the high priority to the independent system operator (ISO). The energy and reserve markets clearing procedures have been run by using a multi-objective decision-making framework. In fact, its objective function includes the operation cost and the customer’s disutility based on the final individual load profile for each DR provider. A two-stage stochastic model is implemented to solve this scheduling problem, which is a mixed-integer linear programming approach. The presented approach is tested on a modified IEEE 24-bus system. The performance of the proposed model is successfully evaluated from economic, technical and wind power integration aspects from the ISO viewpoint.

Suggested Citation

  • Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1261-:d:219153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    2. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    5. Hajibandeh, Neda & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators," Applied Energy, Elsevier, vol. 212(C), pages 721-732.
    6. HyungSeon Oh, 2018. "Demand-Side Management with a State Space Consideration," Energies, MDPI, vol. 11(9), pages 1-12, September.
    7. Aghaei, Jamshid & Alizadeh, Mohammad-Iman & Siano, Pierluigi & Heidari, Alireza, 2016. "Contribution of emergency demand response programs in power system reliability," Energy, Elsevier, vol. 103(C), pages 688-696.
    8. Venkat Durvasulu & Timothy M. Hansen, 2018. "Benefits of a Demand Response Exchange Participating in Existing Bulk-Power Markets," Energies, MDPI, vol. 11(12), pages 1-21, December.
    9. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    10. Kwag, Hyung-Geun & Kim, Jin-O, 2014. "Reliability modeling of demand response considering uncertainty of customer behavior," Applied Energy, Elsevier, vol. 122(C), pages 24-33.
    11. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    12. Kwag, Hyung-Geun & Kim, Jin-O, 2012. "Optimal combined scheduling of generation and demand response with demand resource constraints," Applied Energy, Elsevier, vol. 96(C), pages 161-170.
    13. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    14. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    2. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2018. "An improved incentive-based demand response program in day-ahead and intra-day electricity markets," Energy, Elsevier, vol. 155(C), pages 205-214.
    3. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    4. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    5. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    6. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    7. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    8. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
    9. Arasteh, Hamidreza & Sepasian, Mohammad Sadegh & Vahidinasab, Vahid, 2016. "An aggregated model for coordinated planning and reconfiguration of electric distribution networks," Energy, Elsevier, vol. 94(C), pages 786-798.
    10. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Zeng, Bo & Zhao, Dongbo & Singh, Chanan & Wang, Jianhui & Chen, Chen, 2019. "Holistic modeling framework of demand response considering multi-timescale uncertainties for capacity value estimation," Applied Energy, Elsevier, vol. 247(C), pages 692-702.
    12. Zeng, Bo & Wei, Xuan & Zhao, Dongbo & Singh, Chanan & Zhang, Jianhua, 2018. "Hybrid probabilistic-possibilistic approach for capacity credit evaluation of demand response considering both exogenous and endogenous uncertainties," Applied Energy, Elsevier, vol. 229(C), pages 186-200.
    13. Ampimah, Benjamin Chris & Sun, Mei & Han, Dun & Wang, Xueyin, 2018. "Optimizing sheddable and shiftable residential electricity consumption by incentivized peak and off-peak credit function approach," Applied Energy, Elsevier, vol. 210(C), pages 1299-1309.
    14. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    15. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    16. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    17. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    18. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    20. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1261-:d:219153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.