IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221002772.html
   My bibliography  Save this article

Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system

Author

Listed:
  • Sharma, Akanksha
  • Jain, Sanjay K.

Abstract

This paper deals with the investigation of a day-ahead reactive power ancillary service procurement problem to minimize cost and voltage deviation under wind power generation uncertainties in a pool-based deregulated system. This reactive power procurement problem is formulated as a dynamic bi-objective optimization problem and is solved using a developed Pareto-based multi-objective artificial electric field algorithm (MO-AEFA). The developed MO-AEFA utilizes nondominated sorting principle and an external archive to store Pareto optimal solutions. Sign and reorder mutation operators are used to avoid trapping in local optima and enhance population diversity. The numerical results obtained from MO-AEFA are compared with other algorithms to validate the efficacy of proposed approach. The optimization algorithm utilizes a fast Newton power flow employing sparse matrix techniques to diminish computational burden. The capacitor switching is decided with consideration of marginal prices. The proposed methodology has been tested on modified IEEE 30-bus and IEEE 118-bus test systems. The performance of both test systems is analyzed for two studies namely, VAr dispatch without wind integration, and VAr dispatch under wind integration. The analysis with wind integration is further investigated for different wind penetration levels. The convergence characteristic of Pareto solutions is measured through statistical distance and diversity metrics.

Suggested Citation

  • Sharma, Akanksha & Jain, Sanjay K., 2021. "Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002772
    DOI: 10.1016/j.energy.2021.120028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yangwu Shen & Mingjian Cui & Qin Wang & Feifan Shen & Bin Zhang & Liqing Liang, 2017. "Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags," Energies, MDPI, vol. 10(6), pages 1-20, June.
    2. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    3. Ahmadimanesh, A. & Kalantar, M., 2017. "A novel cost reducing reactive power market structure for modifying mandatory generation regions of producers," Energy Policy, Elsevier, vol. 108(C), pages 702-711.
    4. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    5. Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
    6. Wang, Ni & Li, Jian & Yu, Xiang & Zhou, Dao & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2020. "Optimal active and reactive power cooperative dispatch strategy of wind farm considering levelised production cost minimisation," Renewable Energy, Elsevier, vol. 148(C), pages 113-123.
    7. Martinez-Rojas, Marcela & Sumper, Andreas & Gomis-Bellmunt, Oriol & Sudrià-Andreu, Antoni, 2011. "Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search," Applied Energy, Elsevier, vol. 88(12), pages 4678-4686.
    8. Taghavi, Reza & Seifi, Ali Reza & Samet, Haidar, 2015. "Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation," Energy, Elsevier, vol. 89(C), pages 511-518.
    9. Ciupăgeanu, Dana-Alexandra & Lăzăroiu, Gheorghe & Barelli, Linda, 2019. "Wind energy integration: Variability analysis and power system impact assessment," Energy, Elsevier, vol. 185(C), pages 1183-1196.
    10. Hadi Nobahari & Mahdi Nikusokhan & Patrick Siarry, 2012. "A Multi-Objective Gravitational Search Algorithm Based on Non-Dominated Sorting," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 3(3), pages 32-49, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, WanJun & Ming, ZhengFeng & Wen, Tao, 2021. "Scheduling strategy of electric vehicle charging considering different requirements of grid and users," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    2. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Zhang, Guozhou & Hu, Weihao & Cao, Di & Zhou, Dao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Coordinated active and reactive power dynamic dispatch strategy for wind farms to minimize levelized production cost considering system uncertainty: A soft actor-critic approach," Renewable Energy, Elsevier, vol. 218(C).
    4. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    5. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    6. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    7. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    8. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Bogdan Tomoiagă & Mircea Chindriş & Andreas Sumper & Antoni Sudria-Andreu & Roberto Villafafila-Robles, 2013. "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II," Energies, MDPI, vol. 6(3), pages 1-17, March.
    11. Piciu Gabriela-Cornelia, 2021. "Decarbonisation Of Economy In Romania," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 98-104, October.
    12. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    13. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    14. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    15. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    16. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    17. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    18. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    20. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.