IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4896-d1177526.html
   My bibliography  Save this article

Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation

Author

Listed:
  • Faraz Bhurt

    (Department of Electrical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Nawabshah 67450, Sindh, Pakistan)

  • Aamir Ali

    (Department of Electrical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Nawabshah 67450, Sindh, Pakistan)

  • Muhammad U. Keerio

    (Department of Electrical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Nawabshah 67450, Sindh, Pakistan)

  • Ghulam Abbas

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Zahoor Ahmed

    (Department of Electrical Engineering, Balochistan University of Engineering and Technology, Khuzdar 89100, Balochistan, Pakistan)

  • Noor H. Mugheri

    (Department of Electrical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Nawabshah 67450, Sindh, Pakistan)

  • Yun-Su Kim

    (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea)

Abstract

The exponential growth of unpredictable renewable power production sources in the power grid results in difficult-to-regulate reactive power. The ultimate goal of optimal reactive power dispatch (ORPD) is to find the optimal voltage level of all the generators, the transformer tap ratio, and the MVAR injection of shunt VAR compensators (SVC). More realistically, the ORPD problem is a nonlinear multi-objective optimization problem. Therefore, in this paper, the multi-objective ORPD problem is formulated and solved considering the simultaneous minimization of the active power loss, voltage deviation, emission, and the operating cost of renewable and thermal generators. Usually, renewable power generators such as wind and solar are uncertain; therefore, Weibull and lognormal probability distribution functions are considered to model wind and solar power, respectively. Due to the unavailability and uncertainty of wind and solar power, appropriate PDFs have been used to generate 1000 scenarios with the help of Monte Carlo simulation techniques. Practically, it is not possible to solve the problem considering all the scenarios. Therefore, the scenario reduction technique based on the distance metric is applied to select the 24 representative scenarios to reduce the size of the problem. Moreover, the efficient non-dominated sorting genetic algorithm II-based bidirectional co-evolutionary algorithm (BiCo), along with the constraint domination principle, is adopted to solve the multi-objective ORPD problem. Furthermore, a modified IEEE standard 30-bus system is employed to show the performance and superiority of the proposed algorithm. Simulation results indicate that the proposed algorithm finds uniformly distributed and near-global final non-dominated solutions compared to the recently available state-of-the-art multi-objective algorithms in the literature.

Suggested Citation

  • Faraz Bhurt & Aamir Ali & Muhammad U. Keerio & Ghulam Abbas & Zahoor Ahmed & Noor H. Mugheri & Yun-Su Kim, 2023. "Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation," Energies, MDPI, vol. 16(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4896-:d:1177526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Hamouda Ali & Ahmed Mohammed Attiya Soliman & Mohamed Abdeen & Tarek Kandil & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "A Novel Stochastic Optimizer Solving Optimal Reactive Power Dispatch Problem Considering Renewable Energy Resources," Energies, MDPI, vol. 16(4), pages 1-39, February.
    2. Sushil Kumar Gupta & Lalit Kumar & Manoj Kumar Kar & Sanjay Kumar, 2022. "Optimal reactive power dispatch under coordinated active and reactive load variations using FACTS devices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2672-2682, October.
    3. Tawfiq M. Aljohani & Ahmed F. Ebrahim & Osama Mohammed, 2019. "Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization," Energies, MDPI, vol. 12(12), pages 1-24, June.
    4. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    5. Zhi Wu & Yuxuan Zhuang & Suyang Zhou & Shuning Xu & Peng Yu & Jinqiao Du & Xiner Luo & Ghulam Abbas, 2020. "Bi-Level Planning of Multi-Functional Vehicle Charging Stations Considering Land Use Types," Energies, MDPI, vol. 13(5), pages 1-17, March.
    6. Salman Habib & Ghulam Abbas & Touqeer A. Jumani & Aqeel Ahmed Bhutto & Sohrab Mirsaeidi & Emad M. Ahmed, 2022. "Improved Whale Optimization Algorithm for Transient Response, Robustness, and Stability Enhancement of an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(14), pages 1-18, July.
    7. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulam Abbas & Aqeel Ahmed Bhutto & Touqeer Ahmed Jumani & Sohrab Mirsaeidi & Mohsin Ali Tunio & Hammad Alnuman & Ahmed Alshahir, 2022. "A Modified Particle Swarm Optimization Algorithm for Power Sharing and Transient Response Improvement of a Grid-Tied Solar PV Based A.C. Microgrid," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    3. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    4. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    5. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    6. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    8. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    10. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    11. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    12. Sheeraz Iqbal & Salman Habib & Muhammad Ali & Aqib Shafiq & Anis ur Rehman & Emad M. Ahmed & Tahir Khurshaid & Salah Kamel, 2022. "The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    13. Abdelhakim Idir & Laurent Canale & Yassine Bensafia & Khatir Khettab, 2022. "Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(23), pages 1-20, November.
    14. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    15. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    16. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    17. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    18. Umar Waleed & Abdul Haseeb & Muhammad Mansoor Ashraf & Faisal Siddiq & Muhammad Rafiq & Muhammad Shafique, 2022. "A Multiobjective Artificial-Hummingbird-Algorithm-Based Framework for Optimal Reactive Power Dispatch Considering Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-23, December.
    19. Lenin Kanagasabai, 2022. "Real power loss reduction by North American sapsucker algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 143-153, February.
    20. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4896-:d:1177526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.