IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp449-464.html
   My bibliography  Save this article

Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program

Author

Listed:
  • Nojavan, Sayyad
  • Zare, Kazem
  • Mohammadi-Ivatloo, Behnam

Abstract

In this paper, bilateral contracting and selling price determination problems for an electricity retailer in the smart grid environment under uncertainties have been considered. Multiple energy procurement sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renewable energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS) as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based stochastic framework is used for uncertainty modeling of pool market prices, client group demand and variable climate condition containing temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand response program (DRP) has been implemented to flatten the load profile to minimize the cost for end-user customers as well as increasing the retailer profit. To validate the proposed model, three case studies are used and the results are compared.

Suggested Citation

  • Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:449-464
    DOI: 10.1016/j.apenergy.2016.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916316099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Yunpeng & Wang, Xifan & Wang, Xiuli & Dang, Can & Lu, Ming, 2016. "Behavior analysis of wind power producer in electricity market," Applied Energy, Elsevier, vol. 171(C), pages 325-335.
    2. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    3. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Electricity procurement for large consumers based on Information Gap Decision Theory," Energy Policy, Elsevier, vol. 38(1), pages 234-242, January.
    4. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    5. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    6. Hajati, Maryam & Seifi, Hossein & Sheikh-El-Eslami, Mohamad Kazem, 2011. "Optimal retailer bidding in a DA market – a new method considering risk and demand elasticity," Energy, Elsevier, vol. 36(2), pages 1332-1339.
    7. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    8. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    9. Babonneau, Frédéric & Caramanis, Michael & Haurie, Alain, 2016. "A linear programming model for power distribution with demand response and variable renewable energy," Applied Energy, Elsevier, vol. 181(C), pages 83-95.
    10. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology," Energy, Elsevier, vol. 35(7), pages 2999-3007.
    11. Brusco, Giovanni & Burgio, Alessandro & Menniti, Daniele & Pinnarelli, Anna & Sorrentino, Nicola, 2016. "The economic viability of a feed-in tariff scheme that solely rewards self-consumption to promote the use of integrated photovoltaic battery systems," Applied Energy, Elsevier, vol. 183(C), pages 1075-1085.
    12. Zhang, Shuo & Xiong, Rui & Cao, Jiayi, 2016. "Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 316-328.
    13. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    14. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Robust day-ahead scheduling of smart distribution networks considering demand response programs," Applied Energy, Elsevier, vol. 178(C), pages 929-942.
    15. Boroumand, Raphaël Homayoun & Zachmann, Georg, 2012. "Retailers' risk management and vertical arrangements in electricity markets," Energy Policy, Elsevier, vol. 40(C), pages 465-472.
    16. Zou, Peng & Chen, Qixin & Xia, Qing & He, Chang & Kang, Chongqing, 2015. "Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach," Applied Energy, Elsevier, vol. 158(C), pages 508-518.
    17. Crespo Del Granado, Pedro & Pang, Zhan & Wallace, Stein W., 2016. "Synergy of smart grids and hybrid distributed generation on the value of energy storage," Applied Energy, Elsevier, vol. 170(C), pages 476-488.
    18. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
    19. Hu, Ming-Che & Lu, Su-Ying & Chen, Yen-Haw, 2016. "Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty," Applied Energy, Elsevier, vol. 182(C), pages 500-506.
    20. Khojasteh, Meysam & Jadid, Shahram, 2015. "Decision-making framework for supplying electricity from distributed generation-owning retailers to price-sensitive customers," Utilities Policy, Elsevier, vol. 37(C), pages 1-12.
    21. Gilbert, François & Anjos, Miguel F. & Marcotte, Patrice & Savard, Gilles, 2015. "Optimal design of bilateral contracts for energy procurement," European Journal of Operational Research, Elsevier, vol. 246(2), pages 641-650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Zhang & Shaohua Zhang & Xian Wang & Xue Li & Lei Wu, 2020. "Conditional-Robust-Profit-Based Optimization Model for Electricity Retailers with Shiftable Demand," Energies, MDPI, vol. 13(6), pages 1-19, March.
    2. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    3. Khojasteh, Meysam & Jadid, Shahram, 2015. "Decision-making framework for supplying electricity from distributed generation-owning retailers to price-sensitive customers," Utilities Policy, Elsevier, vol. 37(C), pages 1-12.
    4. Boroumand, Raphaël-Homayoun & Goutte, Stéphane & Guesmi, Khaled & Porcher, Thomas, 2019. "Potential benefits of optimal intra-day electricity hedging for the environment: The perspective of electricity retailers," Energy Policy, Elsevier, vol. 132(C), pages 1120-1129.
    5. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    6. Zhang, Yuanyuan & Zhao, Huiru & Li, Bingkang & Zhao, Yihang & Qi, Ze, 2022. "Research on credit rating and risk measurement of electricity retailers based on Bayesian Best Worst Method-Cloud Model and improved Credit Metrics model in China's power market," Energy, Elsevier, vol. 252(C).
    7. Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
    8. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.
    9. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    10. Grimm, Veronika & Orlinskaya, Galina & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2021. "Optimal design of retailer-prosumer electricity tariffs using bilevel optimization," Omega, Elsevier, vol. 102(C).
    11. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    12. Shin, Hunyoung & Baldick, Ross, 2018. "Mitigating market risk for wind power providers via financial risk exchange," Energy Economics, Elsevier, vol. 71(C), pages 344-358.
    13. Flottmann, Jonty & Wild, Phillip & Todorova, Neda, 2024. "Derivatives and hedging practices in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 189(C).
    14. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    15. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    16. Arthur Lauro & Daniel Kitamura & Waleska Lima & Bruno Dias & Tiago Soares, 2023. "Considering Forward Electricity Prices for a Hydro Power Plant Risk Analysis in the Brazilian Electricity Market," Energies, MDPI, vol. 16(3), pages 1-13, January.
    17. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    18. Alfredo Trespalacios & Lina M. Cortés & Javier Perote, 2021. "Modeling Electricity Price and Quantity Uncertainty: An Application for Hedging with Forward Contracts," Energies, MDPI, vol. 14(11), pages 1-26, June.
    19. Juan M. Gómez & Yeny E. Rodríguez, 2022. "Multiperiod Portfolio of Energy Purchasing Strategies including Climate Scenarios," Energies, MDPI, vol. 15(9), pages 1-25, April.
    20. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:449-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.