IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v123y2018icp398-406.html
   My bibliography  Save this item

A review on the applications of nanofluids in solar energy field

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
  2. Ji, Yasheng & Zhou, Jinzhi & Zhao, Kaiming & Zhang, Nan & Lu, Lin & Yuan, Yanping, 2023. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system under different climate conditions: Electrical and thermal assessment," Energy, Elsevier, vol. 278(PB).
  3. Youngho Lee & Hyomin Jeong & Yonmo Sung, 2021. "Thermal Absorption Performance Evaluation of Water-Based Nanofluids (CNTs, Cu, and Al 2 O 3 ) for Solar Thermal Harvesting," Energies, MDPI, vol. 14(16), pages 1-12, August.
  4. Gong, Han & Cui, Zheng & Shao, Wei & Ma, Xiaoteng, 2022. "Investigation of a novel surface inlay composite nanoparticle based on local surface plasmon resonance-enhanced solar absorption," Renewable Energy, Elsevier, vol. 197(C), pages 452-461.
  5. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
  6. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
  7. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
  8. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
  9. Janusz T. Cieśliński & Przemysław Kozak, 2023. "Experimental Investigations of Forced Convection of Nanofluids in Smooth, Horizontal, Round Tubes: A Review," Energies, MDPI, vol. 16(11), pages 1-49, May.
  10. Moucun Yang & Sa Wang & Yuezhao Zhu & Robert A. Taylor & M.A. Moghimi & Yinfeng Wang, 2020. "Thermal Stability and Performance Testing of Oil-based CuO Nanofluids for Solar Thermal Applications," Energies, MDPI, vol. 13(4), pages 1-16, February.
  11. Sheikh, Nadeem Ahmad & Ali, Farhad & Khan, Ilyas & Gohar, Madeha, 2018. "A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 135-142.
  12. Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
  13. Fouad Othman Mallawi & Malik Zaka Ullah, 2021. "Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
  14. Nidhal Ben Khedher & Fatih Selimefendigil & Lioua Kolsi & Walid Aich & Lotfi Ben Said & Ismail Boukholda, 2022. "Performance Optimization of a Thermoelectric Device by Using a Shear Thinning Nanofluid and Rotating Cylinder in a Cavity with Ventilation Ports," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
  15. Shi, Xuyang & Sun, Jinjing & Zhong, Shan & Huang, Diangui, 2021. "Flow control of a stalled S809 airfoil using an oscillating micro-cylinder at different angles of attack," Renewable Energy, Elsevier, vol. 175(C), pages 405-414.
  16. Kaood, Amr & Abubakr, Mohamed & Al-Oran, Otabeh & Hassan, Muhammed A., 2021. "Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators," Renewable Energy, Elsevier, vol. 177(C), pages 1045-1062.
  17. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).
  18. Selimefendigil, Fatih & Öztop, Hakan F., 2021. "Thermoelectric generation in bifurcating channels and efficient modeling by using hybrid CFD and artificial neural networks," Renewable Energy, Elsevier, vol. 172(C), pages 582-598.
  19. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
  20. Natividade, Pablo Sampaio Gomes & de Moraes Moura, Gabriel & Avallone, Elson & Bandarra Filho, Enio Pedone & Gelamo, Rogério Valentim & Gonçalves, Júlio Cesar de Souza Inácio, 2019. "Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids," Renewable Energy, Elsevier, vol. 138(C), pages 152-160.
  21. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
  22. Vallejo, Javier P. & Mercatelli, Luca & Martina, Maria Raffaella & Di Rosa, Daniele & Dell’Oro, Aldo & Lugo, Luis & Sani, Elisa, 2019. "Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 141(C), pages 791-801.
  23. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
  24. Doaa Rizk & Asad Ullah & Ikramullah & Samia Elattar & Khalid Abdulkhaliq M. Alharbi & Mohammad Sohail & Rajwali Khan & Alamzeb Khan & Nabil Mlaiki, 2022. "Impact of the KKL Correlation Model on the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ZnO+Water) Flow through Permeable Vertically Rotating Surface," Energies, MDPI, vol. 15(8), pages 1-16, April.
  25. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  26. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems," Energy, Elsevier, vol. 213(C).
  27. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
  28. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  29. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
  30. Shubo Liu & Yi Yang & Kuiyuan Ma & Haichuan Jin & Xin Jin, 2022. "Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator," Energies, MDPI, vol. 15(23), pages 1-15, December.
  31. Badreddine Ayadi & Fatih Selimefendigil & Faisal Alresheedi & Lioua Kolsi & Walid Aich & Lotfi Ben Said, 2021. "Jet Impingement Cooling of a Rotating Hot Circular Cylinder with Hybrid Nanofluid under Multiple Magnetic Field Effects," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
  32. Prakash, J. & Siva, E.P. & Tripathi, D. & Kuharat, S. & Bég, O. Anwar, 2019. "Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump," Renewable Energy, Elsevier, vol. 133(C), pages 1308-1326.
  33. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
  34. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
  35. Fatih Selimefendigil & Mohamed Omri & Walid Aich & Hatem Besbes & Nidhal Ben Khedher & Badr M. Alshammari & Lioua Kolsi, 2023. "Numerical Study of Thermo-Electric Conversion for TEG Mounted Wavy Walled Triangular Vented Cavity Considering Nanofluid with Different-Shaped Nanoparticles," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
  36. Tassaddiq, Asifa & Khan, I. & Nisar, K.S., 2020. "Heat transfer analysis in sodium alginate based nanofluid using MoS2 nanoparticles: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.