IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v19y1991i5p429-445.html
   My bibliography  Save this item

Neural network models and the prediction of bank bankruptcy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
  2. Davalos, Sergio & Gritta, Richard D. & Adrangi, Bahram, 2007. "Deriving Rules for Forecasting Air Carrier Financial Stress and Insolvency: A Genetic Algorithm Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(2).
  3. Rezaei , Pooria & Ebrahimi , Seyed Babak & Azin , Pejman, 2019. "Evaluating the Application of a Financial Early Warning System in the Iranian Banking System," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 14(2), pages 177-204, April.
  4. Greta Falavigna, 2006. "Models for Default Risk Analysis: Focus on Artificial Neural Networks, Model Comparisons, Hybrid Frameworks," CERIS Working Paper 200610, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
  5. Indro, D. C. & Jiang, C. X. & Patuwo, B. E. & Zhang, G. P., 1999. "Predicting mutual fund performance using artificial neural networks," Omega, Elsevier, vol. 27(3), pages 373-380, June.
  6. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
  7. Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.
  8. León, Carlos & Barucca, Paolo & Acero, Oscar & Gage, Gerardo & Ortega, Fabio, 2020. "Pattern recognition of financial institutions’ payment behavior," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
  9. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
  10. Elena G. Shershneva, Min Zhou Hao, 2024. "Russian Banks Financial Stability Loss Diagnostic: Multidimensional Logit-Model Approach," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(2), pages 476-498.
  11. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
  12. Fazelina Sahul Hamid, 2013. "The Effect of Reliance on International Funding on Banking Fragility: Evidence from East Asia," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(1), pages 29-60, February.
  13. Tarun K. Sen & Andrew M. Gibbs, 1994. "An Evaluation of the Corporate Takeover Model Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 279-292, December.
  14. Sancho Salcedo‐Sanz & Mario DePrado‐Cumplido & María Jesús Segovia‐Vargas & Fernando Pérez‐Cruz & Carlos Bousoño‐Calzón, 2004. "Feature selection methods involving support vector machines for prediction of insolvency in non‐life insurance companies," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 261-281, October.
  15. Romero Martínez, Mariano & Carmona Ibáñez, Pedro & Pozuelo Campillo, José, 2021. "Utilidad del Deep Learning en la predicción del fracaso empresarial en el ámbito europeo || The usefulness of Deep Learning in the prediction of business failure at the European level," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 392-414, December.
  16. Adam Fadlalla & Chien-Hua Lin, 2001. "An Analysis of the Applications of Neural Networks in Finance," Interfaces, INFORMS, vol. 31(4), pages 112-122, August.
  17. Theophilos Papadimitriou & Periklis Gogas & Anna Agrapetidou, 2022. "The resilience of the U.S. banking system," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2819-2835, July.
  18. Aykut Ekinci & Halil İbrahim Erdal, 2017. "Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 677-686, April.
  19. Emel, Ahmet Burak & Oral, Muhittin & Reisman, Arnold & Yolalan, Reha, 2003. "A credit scoring approach for the commercial banking sector," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 103-123, June.
  20. Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
  21. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
  22. Parnes, Dror & Gormus, Alper, 2024. "Prescreening bank failures with K-means clustering: Pros and cons," International Review of Financial Analysis, Elsevier, vol. 93(C).
  23. C. Quek & R. W. Zhou & C. H. Lee, 2009. "A novel fuzzy neural approach to data reconstruction and failure prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 165-187, January.
  24. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
  25. Umair Bin YOUSAF & Khalil JEBRAN & Man WANG, 2022. "A Comparison of Static, Dynamic and Machine Learning Models in Predicting the Financial Distress of Chinese Firms," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 122-138, April.
  26. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
  27. Kyoung-jae Kim & Kichun Lee & Hyunchul Ahn, 2018. "Predicting Corporate Financial Sustainability Using Novel Business Analytics," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
  28. Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
  29. Ekaterina Tzvetanova, 2019. "Adaptation of the Altman’s Corporate Insolvency Prediction Model – The Bulgarian Case," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 125-142.
  30. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
  31. Gruca, TS & Klemz, BR, 1998. "Using Neural Networks to Identify Competitive Market Structures from Aggregate Market Response Data," Omega, Elsevier, vol. 26(1), pages 49-62, February.
  32. Premachandra, I.M. & Chen, Yao & Watson, John, 2011. "DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment," Omega, Elsevier, vol. 39(6), pages 620-626, December.
  33. Chan, David Y. & Vasarhelyi, Miklos A., 2011. "Innovation and practice of continuous auditing," International Journal of Accounting Information Systems, Elsevier, vol. 12(2), pages 152-160.
  34. Santosh Kumar Shrivastav & P. Janaki Ramudu, 2020. "Bankruptcy Prediction and Stress Quantification Using Support Vector Machine: Evidence from Indian Banks," Risks, MDPI, vol. 8(2), pages 1-22, May.
  35. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
  36. Федорова Е.А. & Гиленко Е.В., 2013. "Применение Моделей Бинарного Выбора Для Прогнозирования Банкротства Банков," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 49(1), pages 106-118, январь.
  37. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
  38. Seyma Caliskan Cavdar & Alev Dilek Aydin, 2015. "An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures," JRFM, MDPI, vol. 8(3), pages 1-18, August.
  39. Samir Trabelsi & Roc He & Lawrence He & Martin Kusy, 2015. "A comparison of Bayesian, Hazard, and Mixed Logit model of bankruptcy prediction," Computational Management Science, Springer, vol. 12(1), pages 81-97, January.
  40. Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
  41. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
  42. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
  43. Fang, Xiao & Rachamadugu, Ram, 2009. "Policies for knowledge refreshing in databases," Omega, Elsevier, vol. 37(1), pages 16-28, February.
  44. Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
  45. Nikola MILOSEVIC, 2016. "Equity Forecast: Predicting Long Term Stock Price Movement using Machine Learning," Journal of Economics Library, KSP Journals, vol. 3(2), pages 288-294, June.
  46. Nicoleta Bărbuță-Mișu & Mara Madaleno, 2020. "Assessment of Bankruptcy Risk of Large Companies: European Countries Evolution Analysis," JRFM, MDPI, vol. 13(3), pages 1-28, March.
  47. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
  48. Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
  49. Carlos León & José Fernando Moreno & Jorge Cely, 2016. "Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition," Borradores de Economia 959, Banco de la Republica de Colombia.
  50. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
  51. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
  52. Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
  53. Halil Erdal & Aykut Ekinci, 2013. "A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 199-215, August.
  54. Younes Boujelb`ene & Sihem Khemakhem, 2013. "Pr\'evision du risque de cr\'edit : Une \'etude comparative entre l'Analyse Discriminante et l'Approche Neuronale," Papers 1311.4266, arXiv.org.
  55. Marco Cantamessa & Valentina Gatteschi & Guido Perboli & Mariangela Rosano, 2018. "Startups’ Roads to Failure," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
  56. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
  57. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
  58. Younes Boujelbène & Sihem Khemakhem, 2013. "Prévision du risque de crédit : Une étude comparative entre l'Analyse Discriminante et l'Approche Neuronale," Working Papers hal-00905199, HAL.
  59. Li Xian Liu & Shuangzhe Liu & Milind Sathye, 2021. "Predicting Bank Failures: A Synthesis of Literature and Directions for Future Research," JRFM, MDPI, vol. 14(10), pages 1-24, October.
  60. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
  61. Ana Paula Matias Gama & Helena Susana Amaral Geraldes, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium‐sized enterprises," Management Research Review, Emerald Group Publishing Limited, vol. 35(8), pages 727-749, July.
  62. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
  63. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
  64. Sohn, So Young & Kim, Hong Sik, 2007. "Random effects logistic regression model for default prediction of technology credit guarantee fund," European Journal of Operational Research, Elsevier, vol. 183(1), pages 472-478, November.
  65. Filippopoulou, Chryssanthi & Galariotis, Emilios & Spyrou, Spyros, 2020. "An early warning system for predicting systemic banking crises in the Eurozone: A logit regression approach," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 344-363.
  66. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
  67. Nikola Milosevic, 2016. "Equity forecast: Predicting long term stock price movement using machine learning," Papers 1603.00751, arXiv.org, revised Nov 2018.
  68. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
  69. Ioannidis, Christos & Pasiouras, Fotios & Zopounidis, Constantin, 2010. "Assessing bank soundness with classification techniques," Omega, Elsevier, vol. 38(5), pages 345-357, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.