IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v28y2000i5p555-565.html
   My bibliography  Save this article

Confidence intervals for controlling the probability of bankruptcy

Author

Listed:
  • Barniv, Ran
  • Mehrez, Abraham
  • Kline, Douglas M.

Abstract

This paper provides confidence intervals for the probability of bankruptcy through the control of financial accounting variables. Our analysis differs in several aspects from standard bankruptcy techniques studied in previous studies. This bankruptcy literature generally provides classification techniques, peruses classification accuracy, and produces point estimators of bankruptcy for each firm. Various measures concerned with the confidence intervals are studied to evaluate the risk involved in predicting the probability of bankruptcy; for example, their maximum and minimum lengths, and their maximum lower bound and minimum upper bounds. We show that local minimum and maximum lengths are global. The empirical results illustrate a substantial improvement (reduction) in the length and the minimum upper bound of the confidence intervals at the optimal level of the financial accounting variables, whereas the lengths at the industry averages were significantly lower. The results are robust for three, two, and one year prior to bankruptcy.

Suggested Citation

  • Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
  • Handle: RePEc:eee:jomega:v:28:y:2000:i:5:p:555-565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00073-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. V. Hansen & J. B. McDonald & W. F. Messier, Jr. & T. B. Bell, 1996. "A Generalized Qualitative-Response Model and the Analysis of Management Fraud," Management Science, INFORMS, vol. 42(7), pages 1022-1032, July.
    2. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    3. Sinkey, Joseph F, Jr, 1975. "A Multivariate Statistical Analysis of the Characteristics of Problem Banks," Journal of Finance, American Finance Association, vol. 30(1), pages 21-36, March.
    4. Jean-Claude Larréché & V. Srinivasan, 1982. "Stratport: A Model for the Evaluation and Formulation of Business Portfolio Strategies," Management Science, INFORMS, vol. 28(9), pages 979-1001, September.
    5. Frecka, Tj & Lee, Cf, 1983. "Generalized Financial Ratio Adjustment Processes And Their Implications," Journal of Accounting Research, Wiley Blackwell, vol. 21(1), pages 308-316.
    6. Christos Alexopoulos, 1994. "Distribution-Free Confidence Intervals for Conditional Probabilities and Ratios of Expectations," Management Science, INFORMS, vol. 40(12), pages 1748-1763, December.
    7. Marais, Ml & Patell, Jm & Wolfson, Ma, 1984. "The Experimental-Design Of Classification Models - An Application Of Recursive Partitioning And Bootstrapping To Commercial Bank Loan Classifications," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 87-114.
    8. Ting†Peng Liang & John S. Chandler & Ingoo Han & Jinsheng Roan, 1992. "An empirical investigation of some data effects on the classification accuracy of probit, ID3, and neural networks," Contemporary Accounting Research, John Wiley & Sons, vol. 9(1), pages 306-328, September.
    9. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    10. WILLIAM HOPWOOD & JAMES McKEOWN & JANE MUTCHLER, 1988. "The sensitivity of financial distress prediction models to departures from normality," Contemporary Accounting Research, John Wiley & Sons, vol. 5(1), pages 284-298, September.
    11. Noreen, E, 1988. "An Empirical-Comparison Of Probit And Ols Regression Hypothesis Tests," Journal of Accounting Research, Wiley Blackwell, vol. 26(1), pages 119-133.
    12. Fernandez-Castro, A & Smith, P, 1994. "Towards a general non-parametric model of corporate performance," Omega, Elsevier, vol. 22(3), pages 237-249, May.
    13. Fuller-Love, N. & Rhys, H. & Tippett, M., 1995. "Harmonic analysis, time series variations and the distributional properties of financial ratios," Omega, Elsevier, vol. 23(4), pages 419-427, August.
    14. R. L. Bulfin & R. G. Parker & C. M. Shetty, 1979. "Computational results with a branch‐and‐bound algorithm for the general knapsack problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(1), pages 41-46, March.
    15. Kaplan, Robert S & Urwitz, Gabriel, 1979. "Statistical Models of Bond Ratings: A Methodological Inquiry," The Journal of Business, University of Chicago Press, vol. 52(2), pages 231-261, April.
    16. Burgstahler, David & Jiambalvo, James & Noreen, Eric, 1989. "Changes in the probability of bankruptcy and equity value," Journal of Accounting and Economics, Elsevier, vol. 11(2-3), pages 207-224, July.
    17. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    18. Eilon, Samuel, 1992. "Key ratios for corporate performance," Omega, Elsevier, vol. 20(3), pages 337-343, May.
    19. Laitinen, Ek, 1993. "Financial predictors for different phases of the failure process," Omega, Elsevier, vol. 21(2), pages 215-228, March.
    20. Duane B. Kennedy, 1992. "Classification techniques in accounting research: Empirical evidence of comparative performance," Contemporary Accounting Research, John Wiley & Sons, vol. 8(2), pages 419-442, March.
    21. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    22. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    23. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    24. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    25. David Goldsman & Lee Schruben, 1990. "Note---New Confidence Interval Estimators Using Standardized Time Series," Management Science, INFORMS, vol. 36(3), pages 393-397, March.
    26. Falbo, P, 1991. "Credit-scoring by enlarged discriminant models," Omega, Elsevier, vol. 19(4), pages 275-289.
    27. Palepu, Krishna G., 1986. "Predicting takeover targets : A methodological and empirical analysis," Journal of Accounting and Economics, Elsevier, vol. 8(1), pages 3-35, March.
    28. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    29. William F. Messier, Jr. & James V. Hansen, 1988. "Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data," Management Science, INFORMS, vol. 34(12), pages 1403-1415, December.
    30. Lo, Andrew W., 1986. "Logit versus discriminant analysis : A specification test and application to corporate bankruptcies," Journal of Econometrics, Elsevier, vol. 31(2), pages 151-178, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beynon, Malcolm J., 2005. "A novel technique of object ranking and classification under ignorance: An application to the corporate failure risk problem," European Journal of Operational Research, Elsevier, vol. 167(2), pages 493-517, December.
    2. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    3. Moon, Tae Hee & Sohn, So Young, 2008. "Technology scoring model for reflecting evaluator's perception within confidence limits," European Journal of Operational Research, Elsevier, vol. 184(3), pages 981-989, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    2. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    3. Kurt M. Fanning & Kenneth O. Cogger, 1994. "A Comparative Analysis of Artificial Neural Networks Using Financial Distress Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 241-252, December.
    4. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    5. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    6. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    7. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    8. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
    12. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    13. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
    14. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    15. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    16. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    17. Poon, Winnie P. H. & Firth, Michael & Fung, Hung-Gay, 1999. "A multivariate analysis of the determinants of Moody's bank financial strength ratings," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(3), pages 267-283, August.
    18. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    19. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    20. Demyanyk, Yuliya & Hasan, Iftekhar, 2009. "Financial crises and bank failures: a review of prediction methods," Bank of Finland Research Discussion Papers 35/2009, Bank of Finland.
    21. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:28:y:2000:i:5:p:555-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.